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SUMMARY 

 
In the fan stage of a turbofan engine, broadband noise is generated by turbulent flow impinging 
on rotor and stator leading edges and by turbulence passing over trailing edges.  This report 
provides an analytical model for prediction of the leading edge sources at both the rotor and 
stator.  Whereas previous modeling treated rotors and stators as isolated blade rows (thereby 
ignoring reflection/transmission effects of neighboring blade rows), the analysis herein addresses 
broadband noise generation in a fully coupled environment.  Modal scattering by the stator and 
mode/frequency scattering by the rotor are included in the acoustic/vortical coupling.  This 
brings in the mode trapping physics previously included only in analyses of tone noise.  Rotors 
and stators are treated as rectilinear cascades immersed in a mean flow that is constant in the 
spanwise direction.  The cascade response theory recognizes 3D perturbations so that a true 3D 
turbulence spectrum can be used for excitation.  Flow turning at both blade rows is handled by 
unsteady actuator disk theory based on the 4 linearized equations for conservation of mass and 
momentum. 
 
If each acoustic mode/frequency combination were coupled to all others, the coupling analysis 
would be unmanageable.  However, in developing the analysis, an important principle was 
discovered.  The set of all participating modes divides itself naturally into many mode sub-sets 
that only couple within themselves.  This property of “independent mode sub-sets” makes the 
broadband problem tractable and is the basis for the analysis.  It was found that simple modal 
averaging techniques can be applied to eliminate many of these sub-sets from calculations and 
thereby save considerable computational effort. 
 
This report presents the derivation of the coupling theory in detail and provides documentation 
for the associated computer code CupBB.  Computed results show that accounting for coupling 
to adjacent blade rows adds considerably to downstream noise and increases the predicted split 
(or differential) between upstream and downstream sound power.  Effects are large enough to 
indicate that absolute level predictions in the future should include the coupling physics. 
 
The broadband coupling method developed here can be adapted to CFD procedures in the future. 
Lessons learned regarding modal sub-sets and modal averaging will carry over with little 
modification. 
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SECTION 1 
INTRODUCTION 

 
Fan noise is generated when flow non-uniformities interact with rotor blades and stator vanes as 
suggested in Figure 1.  Sources can be classified into leading or trailing edge types.  Leading 
edge sources include rotor inflow disturbances such as inlet distortion, atmospheric turbulence, 
and duct boundary layer turbulence.  Stator inflow disturbances are primarily from the rotor 
wake and endwall flow.  Trailing edge noise (also called self noise) is generated when turbulence 
in a blade or vane boundary layer interacts with a trailing edge.  Fan noise can be further 
classified into tones or broadband as indicated in Figure 2.  Tone noise is generated when the 
rotor interacts with a fixed flow distortion and when the stator interacts with the periodic 

component of the rotor wakes.  This report is concerned with broadband noise caused by 
turbulence.  The focus herein is on leading edge sources although the coupling methodology 
could be extended to trailing edge sources (self noise) as well. 
 
Modeling for turbulence leading edge noise dates back at least to the early 1960’s when simple 
estimates were made of overall noise based on turbulence intensity.  No spectral distributions 
could be made with those early models.  In the ensuing years, broadband modeling has become 
increasingly sophisticated with inclusion of spectral shapes, non-compactness, 3 dimensionality, 
and cascade effects.  However, all of the preceding modeling treated noise generation by an 
isolated blade row only.  For example, in noise generation at the stator in Figure 1, the only role 
of the rotor would be to generate turbulent wakes.  Effects of acoustic reflection and transmission 
were ignored in earlier work. 
 
The purpose of this report is to provide a first look at the effects a neighboring blade row on 
broadband noise generation.  For noise generation at the stator, rotor reflection and transmission 
loss are obviously issues to consider.  However, the report goes beyond that by including full 
unsteady coupling of the pressure and vortical waves between a rotor and stator.  In addition to 
reflection and transmission losses at both blade rows, this accounts for mode and frequency 
scattering and mode trapping. 
 

Fan Tones Jet

Fan Broadband 

Frequency 

SPL
dB

 
Figure 2.  Fan noise spectrum showing major 
contributing sources. 

Rotor 

Rotor Wake 
Turbulence

Stator

Fgure 1. Noise generation in a turbofan by 
turbulence in rotor wakes impinging on stator.  
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This report is an extension of previous work by the author: Reference 1 treats coupled 
rotor/stator tone interaction in 2D; References 2 and 3 analyze broadband noise generated by 
isolated rotors and stators.  The present report combines these 2 methodologies in a coupled 
broadband model that has been coded as CupBB.  This work has been enabled by the appearance 
of a harmonic cascade theory by Glegg (ref. 4) that this report adapts to the broadband problem.  
Glegg’s theory accounts for inflow disturbances with wavenumber in all 3 coordinate directions; 
hence, 3D turbulence can be represented rigorously. 
 
In the following, Section 2 presents background on the tone theory for coupled cascades and on 
the broadband theory for isolated cascades.  It then outlines the strategy for combining these into 
the coupled broadband model.  Section 3 summarizes the equations to be solved for the mean 
and unsteady flow.  Section 4 develops the concept of “independent mode sub-sets” that 
facilitates the analysis.  Sections 5 and 6 derive the coupling equations.  Section 7 solves the 
coupled equations for the broadband application and shows how they are driven by a turbulence 
spectrum.  Section 8 provides some verification of the new theory and presents sample 
calculations of sound power spectra to establish the importance of coupling effects.  Section 9 
gives some concluding remarks.  Appendices A and B show how Glegg’s theory is adapted to 
the current application.  Appendix C derives equations for unsteady actuator disks used to 
represent flow turning at the rotor and stator.  Finally, Appendix D provides a list of notation. 
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SECTION 2 
BACKGROUND & STRATEGY FOR COUPLED BROADBAND THEORY 

 
This section provides brief reviews of earlier theories for tone noise generation in a coupled 
rotor/stator environment and for broadband noise from an isolated rotor or stator.  Then the 
strategy is outlined for combining these methodologies into the coupled broadband prediction 
scheme. 
 

Review of Coupled Tone Method 
Reference 1 presents a 2D scheme for coupling a rotor and stator modeled by flat plates as in 
Figure 3.  The rotor sends acoustic and vortical waves to the stator and the stator sends acoustic 
waves to the rotor in a full unsteady coupling.  Excitation of the system was via the periodic 
component of the rotor wake.  It was 
found for certain vane/blade ratios that 
the blade passing frequency component 
of the wake produced high levels of 
2×BPF and 3×BPF noise through 
frequency scattering at the rotor and 
trapping of the fundamental interaction 
mode between rotor and stator.  After 
developing the coupling scheme via 2D 
modeling, it was extended to quasi 3D 
in Ref. 5 and is used at Pratt & Whitney 
for fan tone prediction in TFaNS, the 
Theoretical Fan Noise Prediction 
System.  We will outline operation of 
the system in a 2 dimensional context 
but readers interested in details should 
consult Refs. 1 and 5.  The coupling 
scheme is re-derived later in this report 
for broadband application so that this 
report does not depend on the references. 
 
Waves are considered in 3 regions per Figure 3 and counted by the index  r .  Also, there are 3 
wave types: T=1, 2 for upstream/downstream propagating pressure waves and  T = 3 for vortical 
waves in 2D.  The pressure waveform for a type  T  wave in region  r  is written in a Fourier 
series as 
 
 1[ ]( , ) ( , ) , 1, 2xTnki k x m nB tr r

T o T
n k

p t p A n k e Tφ+ − Ω= =∑ ∑x  (2.1) 

 
Coordinate  x  corresponds to the fan axis and  φ  is used for the transverse coordinate.  
Circumferential mode order given by the classic Tyler-Sofrin mode selection rule (Ref. 6): 
 
 1 2m nB kB= −  (2.2) 
 

REGION 1     REGION 2   REGION  3

ROTOR STATOR

ΩR

 
Figure 3.  Flat plate representation for coupled rotor/ 
stator tone noise in Ref. 1. 
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B1 and  B2  are the numbers of blades and vanes.  The first summation is over the blade passing 
harmonics, counted by  n .  The second summation is over  k , the stator scattering index.  
Vortical modes are represented by their transverse velocity component in parallel form 
 
 1[ ]( , ) ( , ) , 3xTnki k x m nB tr r

T o T
n k

v t a A n k e Tφ+ − Ω= =∑∑x  (2.3) 

 
Scattering by the blade rows is denoted by coefficients defined in the following notation that 
relates modal amplitudes to each other 
 
 ( , ) ( , ; , ) ( , )r r r r

T T T TA n k S n k n k A n k′ ′
′ ′′ ′ ′ ′⇐  (2.4) 

 
where  ( , ; , )r r

T TS n k n k′
′ ′ ′   is the scattering coefficient giving the ratio of output wave amplitudes 

(with the primes) to input wave amplitudes (without primes).  When all of these scattering 
coefficients are found from a cascade unsteady response theory, the resulting equations are 
arranged in matrix form as follows 
 

 

1 11 11 12
1 12 13 11
1 11
2 21
1 11
3 31
2 22 22 23
1 12 13 11
2 21 21 22
2 22 23 21
2 21 21 22
3 32 33 31
3 33 33
1 12 13
3 32
2 22 2
3
3

A S S S

A S

A S

A S S S

A S S S

A S S S

A S S

A S S

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 1
1 1
1 1
2 2
1 1
3 3
2 2
1 1
2 2
2 2
2 2
3 3
3 3
1 1

32 33 3 3
3 21 2 2

32 32 33 3 3
32 33 31 3 3

A B

A B

A B

A B

A B

A B

A B

S A B

S S S A B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥× +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.5) 

 
 
This partially compressed notation suppresses the  n, k  subscripts shown explicitly in Eq. 2.4. 
Dots in the matrix represent zero blocks.  The notation can be further compressed so that 
Equation 2.5 reads 
 
 = +A S A B   (2.6) 
 
B  is the source vector or array of coefficients of prescribed waves that excite the system.  
Solution of this coupled system for the state vector  A  is given formally by 
 
 1( )−= −A 1 S B   (2.7) 

For wake excitation, the only non-zero elements of  B  would be the  2
3 ( , ) 'sB n k  to represent 

vortical waves (T = 3)  from region #2.  These coefficients, in an expression like Eq. 2.3 would 
define the rotor wake (only the  k = 0 term is needed for convected disturbances). 
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When all of the elements of the state vector are found from Eq. 2.7, the entire wave field can be 
constructed from Equations 2.1 and 2.3. 
 
Over a range of vane/blade ratios, the fundamental interaction mode can be trapped between 
rotor and stator.  In this case, the tone coupling effect can be very strong and actually dominate 
noise generation.   For example, Fig. 4, reproduced from Ref. 1, shows the downstream sound 
power in 3 BPF harmonics that results from exciting the stator with the BPF fundamental of the 
rotor wake in a coupled environment.  Below BPF cuton in the aft duct, which is at  Mt = 0.80, 
the noise is dominated by energy scattered up in frequency by the rotor.  We now know how to 
avoid this situation by proper choice of vane count (and thereby, mode selection).  However, 
since broadband noise generation includes all modes, mode trapping could also be a factor in that 
spectrum component and may be more difficult to control.  One objective of the model 
developed this report is to determine the importance of mode trapping in broadband fan noise; 
however, further numerical studies are needed to resolve that issue. 
 
 

 
Figure 4.  Coupled tone calculation from Ref. 1 showing 3 BPF harmonics resulting from excitation of the 
stator by the one harmonic of the wake at BPF. 

0.70 0.750.65 0.80 0.85 0.90 0.95 1.00
30

40

50

60

70

80

90

AFT 
PWL 
dB 

Rotor Rotational Mach Number 



NASA/CR—2001-211136/REV1 6

Review of Broadband Method for Noise from an Isolated Stator 
Here we review how the harmonic acoustic response of a cascade can be used in a broadband 
model for noise caused by inflow turbulence.  This and the above coupled harmonic analysis will 
be used to explain how the coupled broadband formulation will be derived later in this report. 
 
First, consider the cascade harmonic problem 
with mean flow and upwash as in Figure 5.  We 
write the harmonic upwash waveform as 
 

 3( )( , ) x qi k x q z t
qw t w e φ ν ω+ + −=x            (2.8) 

 
In this notation, φ = y/R  represents angle 
around an “unwrapped annulus” of effective 
radius  R .   z  takes the role of the radial 
coordinate and ν  is its associated wavenumber.  
With axial wavenumber 
 

   3x q

q V
Rk

U

ω −
=          (2.9) 

 
Eq. 2.8 represents a convected wave (as in the frozen gust model of turbulence).  Say we have a 
cascade response function  Fk(ω,ν)  from an analysis like Glegg’s (Ref. 4) that gives the 
upstream acoustic pressure resulting from the upwash as 
 

 1 2[ ( ) ]( , ) ( , ) x qki k x q kB z t
q k

k
p t w F e φ ν ωω ν + − + −= ∑x   (2.10) 

 
where  k  is the scattering index for the stator and  kx1qk  is the axial wavenumber for acoustic 
waves.  With these equations, the harmonic acoustic pressure field can be computed from the 
inflow perturbation. 
 
So far the discussion has related to harmonic excitation and response;  wq  is a Fourier coefficient 
and Eq. 2.10 is a Fourier series.  Now, we want to extend the above for application to broadband 
noise, in which case we deal with Fourier transforms and Fourier integrals.  We generalize the 
inflow representation of Eq. 2.8 to aperiodic waves 
 

 3( )( , ) ( , ) x qi k x q z t
q

q
w t w e d dφ ν ωω ν ω ν+ + −=∑ ∫∫x   (2.11) 

 
which represents the upwash disturbance as a sum/integral over circumferential order  q , radial 
order  ν , and frequency  ω .  (In a more general type of flow, an integral over axial wavenumber 
would also be included.  However, for convected waves, axial wavenumber and frequency are 
related through Eq. 2.9 and the fourth integral is not required.)  There is an issue of existence of 
the Fourier transform  wq  in Eq. 2.11.  However, there are standard methods to deal with this, as 
applied later in the formal derivations. 

wq 

W
V

U

x

y

Figure 5. Sketch for cascade discussion. 
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With inflow represented by Eq. 2.11, the corresponding aperiodic response (generalizing Eq. 
2.10) is 
 

 1 2[ ( ) ]( , ) ( , ) ( , ) x qki k x q kB z t
q k

k q
p t w F e d dφ ν ωω ν ω ν ω ν+ − + −=∑ ∑∫∫x   (2.12) 

 
Note that  wq(ω, ν )  is now a Fourier transform rather than a Fourier coefficient but that  Fk(ω,ν)  
is the same acoustic harmonic response function used for the tone analysis. 
 
In principle, any non-periodic excitation and response fields could be represented in these forms.  
This is not actually possible in the case of turbulent flow, however, because  w(x,t)  [and  
wq(ω,ν) ] cannot be known in sufficient detail.  Instead we deal with statistical quantities (or 
expected values).  In the following we review how the expected value of the pressure mean 
square (and its spectrum) can be related to the turbulence spectrum in an isolated cascade 
analysis.  This is provided as a point of departure for the coupled broadband analysis. 
 
To start, we square Eq. 2.12 and take the expected values of both sides, giving 
 

1 1 2 2

2 * *

{( ) [( ) ( )] ( ) ( ) }

( , ) ( , ) ( , ) ( , ) ( , )

x qk x q k

q q k k
k k q q

i k k x q kB q k B z t

p t w w F F

e d d d dφ ν ν ω ω

ω ν ω ν ω ν ω ν

ω ω ν ν′ ′

′ ′
′ ′

′ ′ ′ ′ ′− + − − − + − − −

′ ′ ′ ′=

′ ′×

∑ ∑ ∑∑ ∫∫ ∫∫x
   

  (2.13) 
 
where  〈 〉  is the expected value operator.  It can be shown that the expected value of the product 
of velocity transforms is related to the upwash component of the turbulence spectrum as follows 
 

 * 1( , ) ( , ) ( ) ( ) ( )q q qq www w
UR

ω ν ω ν δ δ ω ω δ ν ν′ ′′ ′ ′ ′= − − Φ K   (2.14) 

 
Turbulence wavenumber  K  has components 
 

 3( , , )x q
qk
R
ν=K   (2.15) 

 
The delta functions in Eq. 2.14 eliminate 2 integrals and a summation, reducing Eq. 2.13 to 
 

1 1 2[( ) ( ) ]2 *

'

1( , ) ( ) ( , ) ( , ) x qk x qki k k x k k B
ww k k

k k q
p t F F e d d

UR
φω ν ω ν ω ν′ ′− − −

′= Φ∑ ∑ ∑∫∫x K   (2.16) 

 
This result for the mean square pressure varies with position via the φ  variable.  If we limit our 
interest to the average over  φ , the averaging process produces another delta,  kkδ ′  .  This 
enables the sum over  k’  and we arrive at our final form for the mean square pressure integrated 
over all frequencies 
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 22 1( , ) ( ) ( , )ww k
k q

p t F d d
UR

ω ν ω ν= Φ∑ ∑∫∫x K   (2.17) 

 
where it can be seen that the  x dependence has disappeared.  (Actually, this is true only for the 
propagating waves.)  Usually, we want the sound spectrum or power spectral density of the 
pressure; this is just the frequency integrand: 
 

 21( ) ( ) ( , )pp ww k
k q

S F d
UR

ω ω ν ν= Φ∑ ∑∫ K   (2.18) 

 
This establishes a very simple relation between the spectrum of turbulence and the sound 
spectrum through the square of the magnitude of the acoustic response function.  There is no 
phase information; only magnitudes appear.  We are generally not interested in phase 
information for the sound spectrum and this is fortunate since turbulence models do not include 
phase. 
 
Figure 6 compares computed results from this theory with scaled data from an ADP fan model.  
In applying the 2D geometry and mean flow, conditions at the 85% radius were used.  
Turbulence intensity and scale were the only free parameters and they were adjusted for a good 
fit to the data.  Further detail is given in Ref. 2.  The fit is reasonably satisfactory: overall shape, 
including high frequency roll off, is good and the upstream/downstream split matches that of the 
data.  However, it will be seen that the match to the upstream/downstream split was fortuitous 
since the more complete analysis shows that the rotor blocks much of the upstream noise from 
the stator. 
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Figure 6.  Calculations from BBCascade compared with scaled test data.  Plot reproduced from Ref. 2. 
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Broadband Coupling 
Now we ask how to combine the 2 types of analysis above into a coupled broadband model.  The 
key is Eq. 2.18: think of the turbulence spectrum  ( )wwΦ K  as excitation for the system and 

think of  2( , )kF ω ν   as the system response function.  There is a parallel with the harmonic 
solution found in Eqs. 2.1 and 2.7; in this case the system response function (1-S)-1  is the inverse 
of a large matrix of Fourier coefficients.   In Section 6 we will see that  (1-S)-1  takes the role of  
Fk(ω, ν)  in Eq. 2.10.  An integral/summation like Eq. 2.18 will be wrapped around this entire 
matrix system.  In the broadband analysis, the elements of  S  will be Fourier transforms instead 
of Fourier coefficients.  This approach rigorously retains all of the phase information in the 
frequency and mode scattering between the blade rows but then gives up the phase information 
in the final working formulas, as was the case with Eq. 2.18.  Again, the sound spectrum will be 
driven by the turbulence spectrum. 
 
The analysis is simpler than might be expected because of the property of “independent mode 
sets” mentioned in the Summary and Introduction.  Sections 3 to 6 establish the coupling matrix 
system, Section 7 connects the matrix system to the turbulence spectrum and gives the final 
working equations for the computer code CupBB, and Section 8 shows some computed 
examples. 
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SECTION 3 

MEAN FLOW AND GENERAL WAVE CHARACTERISTICS 
 
In this section we define the environment for the coupled blade row analysis.  This includes the 
duct boundaries, mean flow, and boundary conditions.  It also gives the general properties of the 
perturbation waves consistent with this ducted flow environment (but without yet accounting for 
the presence of blades and vanes). 
 
In later sections, we use Glegg’s unsteady cascade analysis (Ref. 4) for the acoustic and vortical 
responses of the blade rows.  Since this treats waves with 3 independent wavenumbers, it permits 
a completely general representation of turbulent flow.  However, it is based on rectilinear 
geometry and a uniform background flow.  Because of this, we represent flow in a fan duct 
annulus by “unwrapping” it and enforcing periodic boundary conditions in the tangential 
direction.  I.e., variables at  φ =±π  are the same.  We introduce an “effective radius”  R , which 
is used for scaling and to make the equations look more like the true 3D acoustic equations in 
cylindrical coordinates.  R  relates the tangential angular and linear coordinates through  y  = φ R.  

Geometry and Mean Flow 
The  x, y, z  coordinates are shown in Figure 7.  x  is parallel to the machine axis,  y  is the 
tangential coordinate (parallel to the direction of rotor rotation), and  z  corresponds to the radial 
coordinate.  Inner and outer duct walls are represented by the  z = 0 and  z = h  planes.    Periodic  
 
 

 
 
Figure 7.  Definition of boundaries and mean flow 
 
 
boundaries are at  y = ±πR .  Mean flow is the same everywhere with axial component  U  and 
tangential (or swirl) component  V .  Represented in vector form, the mean velocity is 
 
 ˆ ˆ ˆ0U V= + +U i j k  (3.1) 
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Perturbation Equations 
Here we follow the general approach and notation of Smith (Ref. 7) but extend it to 3 
dimensions.  Unsteady flow satisfies the linearized continuity and momentum equations 
 

 2 0r r
Dp a
Dt

ρ+ ∇ ⋅ =u  (3.2) 

 

 r
D p
Dt

ρ = −∇u  (3.3) 

where the convective derivative is 

 D
D t t

∂= + ⋅∇
∂

U  (3.4) 

 
and subscript  r  implies mean value in a region designated by  r .  For perturbations periodic in 
space and time, solutions have the general form 
 

 ( )x y zi k x k y k z t

p p
u u

e
v v
w w

ω+ + −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (3.5) 

 
Note that the convective derivative yields 
 

 ( )x y
D i U k V k
Dt

ω= − + +  (3.6) 

 
and, accordingly, define a parameter that occurs frequently in the analysis 
 
 x yU k V kλ ω= − + +  (3.7) 

 
 

When we substitute the solutions from Eq. 3.5 into the continuity and momentum equations, the 
exponentials cancel and we can write 
 

 

2 2 2

/ 0 0 0
/ 0 0

/ 0 0

r r x r r y r r z

x r

y r

z r

a k a k a k p
k u
k v

wk

λ ρ ρ ρ
ρ λ
ρ λ
ρ λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (3.8) 

 
Non-trivial solutions are obtained from 
 
 2 2 2 2 2 2[ ( )] 0r x y za k k kλ λ − + + =  (3.9) 
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This permits 4 wave types.  For periodicity in  y , we require  m  to be an integer in  ky y = mφ.   
This, with φ =y/R , gives ky = m/R.  Also, for hard wall boundary conditions, we use linear 
combinations of Eqs. 3.5 to give  sines and cosines for  z  dependence.  Thus,  µ  is an integer 
and  kz = (µπ /h).  The following form fits all 4 wave types 
 

 

( )

( )

( )

( )

cos( )

cos( )

cos( ) 1, 2,3, 4

sin( )

T

T

T

T

T T

T T

T T

T T

x

x

x

x

zi k x m t
h
zi k x m t

h
zi k x m t

h
zi k x m t

h

p p e

u u e

v v e T

w w e

µπφ ω

µπφ ω

µπφ ω

µπφ ω

+ −

+ −

+ −

+ −

=

=

= =

=

 (3.10) 

 
These, with the correct relationships between the pressure and velocity magnitudes (given 
below), satisfy the governing equations, the periodicity conditions in the  y  direction,  and zero 
radial velocity at the duct walls at  z = 0  and  h .  Characteristics of the different wave types will 
be discussed below. 
 
Pressure Waves 
In Eq. 3.9 pressure waves are associated with 
 
 2 2 2 2 2[ ( )] 0r x y za k k kλ − + + =  (3.11) 

This can be solved for the axial wavenumber  kx : 
 

 2 2 2 2 2
2 2

1 ( ) ( ) ( )( )x y r y r y z
r

k U Vk a Vk a U k k
a U

ω ω⎡ ⎤= − + ± − + − − +⎢ ⎥⎣ ⎦−
 (3.12) 

 
As in Smith’s analysis, we identify upstream-going pressure (or acoustic) waves as Type 1 
waves: 

 
2 2 2 2 2

1 2 2
1 ( ) ( ) ( )[( ) ( ) ]mx r r R h

r
k U mV R a mV R a U

a U
µπω ω⎡ ⎤= − + − − + − − +⎢ ⎥⎣ ⎦−

 (3.13) 

 
and downstream-going pressure waves as Type 2 waves: 
 

2 2 2 2 2
2 2 2

1 ( ) ( ) ( )[( ) ( ) ]mx r r R h
r

k U mV R a mV R a U
a U

µπω ω⎡ ⎤= − + + − + − − +⎢ ⎥⎣ ⎦−
 (3.14) 

 
Depending on frequency and mode orders  m  and  µ , the argument of the square root can be 
positive or negative.  If it is positive, the axial wavenumber is pure real and waves propagate 
without decay.  If the argument is negative, the axial wavenumber is complex and waves decay.  
The signs of the square roots must be chosen so that waves decay exponentially away from the 
blade row in the  x  direction. 
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For the pressure waves we use the momentum equation to relate the complex velocity 
magnitudes to the complex magnitude defining the pressure waves: 
 

 1, 2

T

T

T

T

T T

T T

T T

x

r

r

r

k

m R

i h

u p

v p T

w p

ρ λ

ρ λ
µπ
ρ λ

= −

= − =

= −

 (3.15) 

 
 
 
Vortical Waves  
In Eq. 3.9 vortical waves are associated with  λ = 0.  i.e. 
 
 0x yU k V kω− + + =  (3.16) 

 
which can be solved for their axial wavenumber.  Since  λ  was squared, there are 2 independent 
vortical waves with the same wavenumber 
 

 3, 4Tx
mV Rk T
U

ω −= =  (3.17) 

 
Substitution into the momentum equation confirms that the vortical waves have no pressure 
 
 0 3, 4Tp T= =  (3.18) 
 
Also, substitution of Eq. 3.17 into the exponentials of Eq. 3.10 verifies that the type 3 and 4 
waves are purely convected.  The relationships between the velocity components depend on 
continuity and the actual families to be used in the modeling.  These will be defined in Section 5. 
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SECTION 4 

PERMITTED MODES AND THE SCATTERING RULES 
 
We intend to build a rotor/stator coupling scheme based on matching modal output of the stator 
to modal input of the rotor and vice versa.  The usual tool for studying modal behavior in the fan 
environment is the “mode order/frequency plot” schematically shown below in Figure 8.  In our 
convention, modes with positive  m  are co-rotating (rotating in the same direction as the rotor). 
Such plots permit us to locate mode orders at 
various frequencies and to determine whether 
they propagate (are cut on) or decay (cut off).  
Modes in the shaded area are cut on; hence, 
we can see that that there are more modes 
propagating at higher frequencies.  The 
cutoff boundaries are given by the square 
root in Eqs. 3.13 and 3.14. When the 
argument is positive, modes propagate.  Test 
data shown in Figure 9 were plotted in the 
same format.  Acoustic power can be found 
at all integer mode orders in the cuton area.  
When the radial modes are included, we find 
that thousands of modes must be accounted 
for to get a complete representation of the 
noise field. 
 
We will see that, when a mode impinges on 
the stator, it scatters out a series of modes of 
different circumferential order.  When each 
of these impinges on the rotor, scattering 
there produces modes of different orders and 
frequencies.  If any mode could scatter into 
any other mode and frequency, the modal 
accounting scheme would be unmanageable.  
We will soon see that this is not the case but 
that only modes within certain sub-sets of the 
total mode count are connected with each other; there is no scattering from one sub-set to 
another.  Once this is understood, the fan broadband analysis can be set up as a series of “small”, 
independent coupling problems and the situation becomes manageable.  This section is devoted 
to explaining the kinematics of broadband scattering/coupling and establishing the independent 
modal sub-sets just mentioned. 
 

Permitted Modes 
Modal scattering by a stator will already be understood in the tone context to readers familiar 
with the Tyler-Sofrin fan noise theory (Ref. 6).   In the tone case, the frequencies and modes are 
restricted to 
 

Circumferential Mode Order - m 

Cut OffCut Off

Modes 
Cut On 

Frequency 

 
Figure 8.  Mode order/frequency plot for  µ = 0 

 
Figure 9. Experimental mode order-frequency plot from 
Boeing’s 18 inch research fan, Ref. 8. 
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 1

1 2

frequency : , ... 1, 0, 1, 2, ...
mode order : ... 1, 0, 1, 2,...

nB n
m nB kB k
ω = Ω = −
= − = −

 (4.1) 

 
i.e. frequencies are restricted to multiples of blade passing frequency (counted by  n ) and 
circumferential mode orders are restricted to the values of  m  resulting from integer values of the 
rotor and stator scattering indices,  n  and  k .  Furthermore, it was shown in Ref. 1 that, even 
after scattering back and forth between rotor and stator, waves are still restricted the frequencies 
and mode orders in Eq. 4.1.  Thus, Eq. 4.1 is a mode set that can scatter only among its members 
but not to other orders and frequencies.  Broadband scattering is more general: any frequency 
and any integer mode order can occur.   In the following, we will find how Eq. 4.1 is generalized 
for the broadband problem. 
 
The space-time dependence of the pressure waves in Equation 3.10 is given by 
 
 ( ) cos( )xi k x m t z

he φ ω µπ+ −  (4.2) 
 
where we can identify circumferential mode order  m  and radial mode order  µ.  A major 
simplification in the analysis arises when we note that there is no scattering from one radial 
mode to another.  This is an artifact of using rectilinear geometry and constant mean flow and is 
true because the pressure modes and upwash components of the vortical modes (see Eq. 3.10) 
have cosine dependence on the radial (z) coordinate.  A cosine input produces a cosine output 
with the same µ.  This simplification would not apply strictly in a situation with real geometry 
and flow but, even there, the radial coupling should be weak and may not be a major factor in 
noise generation.  Thus, radial order µ  becomes a parameter and, for coupling at any  x  plane, 
we can focus on circumferential orders via the exponential  ( )i m te φ ω− .  To establish the 
scattering rules, we define  mφ - ωt  to be the kinematic phase, i.e. 
 
 m tψ φ ω= −  (4.3) 
 
and track its behavior as waves scatter back and forth between the rotor and stator. 
 
To start the discussion, we must define interblade phase angle  σ   and show what happens to it 
upon scattering by a cascade.  Since  σ   is the phase shift from  y = 0  to  y = g (the blade gap),  it 
follows (using the exponential form in Eq. 3.5) that σ  = kyg .  In our rectilinear geometry the 
tangential wavenumber  ky = m/R .  Cascade theory (see Ref. 4 or 7) teaches us that, for an input 
wave with frequency ω  and circumferential wave number  ky =σ/g , the scattered waves have the 
same frequency  ω  and their circumferential wavenumbers are 

 2
y

kk
g

σ π−′ =  (4.4) 

 
where  k  is an integer that we call the scattering index and the prime indicates a scattered wave.  
Consider a wave input to the stator with circumferential order  q  and frequency  ωo .  The 
circumferential wavenumber of the input wave is  ky = σ/g = q/R.  And since  B2 g=2πR , it 
follows that  
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2

2 q
B
πσ =  (4.5) 

 
And for  /yk m R′ = , it can be seen from Eq. 4.4 that the orders of the scattered modes are given 
by 
 2m q kB= −  (4.6) 
 
Thus, from Eq. 4.3 the kinematic phases of the waves scattered by the stator with input  

oq tψ φ ω= −  are 
 
 2( ) oq kB tψ φ ω′ = − −  (4.7) 
 
To consider scattering at the rotor, shift to rotor coordinates via 
 
 r tφ φ= +Ω  (4.8) 
 
Then, the same mode viewed in the rotor frame has phase 
 
 2 2( ) [ ( ) ]r oq kB q kB tψ φ ω′ = − − − − Ω  (4.9) 
 
It can be seen that the frequency in that frame is  
 

  2( )r o q kBω ω= − − Ω  (4.10) 
 
For scattering by the rotor, we use the index  n  (with the opposite sign for convenience) so that 
the waves scattered by the rotor have kinematic phase 
 
 1 2 2( ) [ ( ) ]r oq nB kB q kB tψ φ ω′′ = + − − − − Ω  (4.11) 
 
Scattering does not change frequency in the rotor frame.  When this expression is shifted back to 
the stator frame via φr=φ - Ω t , we find that the same waves have the form 
 
 1 2 1( ) ( )oq nB kB nB tψ φ ω′′ = + − − + Ω  (4.12) 
 
Mode orders have been shifted from the input order  q  by  nB1 - kB2  and frequencies have been 
scattered up and down from the input frequency  ωo  by multiples of blade passing frequency  
nB1Ω . 
 
This process of following the scattering from stator to rotor and back can be repeated indefinitely 
but it turns out that the waves, when represented in the stator frame, always have the form given 
by Eq. 4.12.  Furthermore, we could have started with a wave impinging on the rotor and found 
the same form.  Thus, to summarize, a wave in the stator frame having frequency  ωo  and mode 
order  q  scatters as follows 
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 1

1 2

frequency : , ... 1, 0,1, 2, ...
mode order : ... 1, 0,1, 2, ...

o o nB n
q m q nB kB k
ω ω ω⇒ = + Ω = −

⇒ = + − = −
 (4.13) 

 
This result establishes the scattering “independent mode sub-set” property asserted above:  if we 
input a set of modes with frequencies  1o nBω + Ω   and orders  1 2m q nB kB= + −  , those modes 
only scatter among themselves and not to other frequencies and not to other mode orders.  In 
particular, at any frequency, only one out of every  B2  modes is involved in the scattering.   
 
We can consider  ωo  and  q  to be frequency and mode offsets from the tone interaction set of 
Eq. 4.1.  The set of modes and frequencies resulting from a choice of  ωo,  µ,  and  q  is 
independent of sets with other values of these indices.  Thus, in the computer code, we can set up 
loops on  ωo,  µ,  and  q  and solve a relatively small coupled problem for scattering on  n  and  k  
for each of these combinations.  In each case, the input is a vector of turbulence modes for all  n  
and  k  and the response is found simultaneously for the acoustic modes for the same ranges of  n  
and  k .  Both  n  and  k  take on positive and negative values.  Fortunately, the required range of  
k  is limited by acoustic cutoff and by decay of the turbulence spectrum.  The range of  n  to be 
included could be limited by the frequency content of the turbulence; however, practically 
speaking, this range may be limited by computer resources.  What we hope is that the  n  
(frequency) range can be truncated at a reasonable value without significantly sacrificing 
accuracy for the frequencies included in the analysis.  This did turn out to be the case for the tone 
problem (Ref.  1) and will be verified later in the broadband case. 
 
This independent mode sub-set property (including the absence of coupling between radial 
orders) changes the broadband coupling problem from one that appeared intractable to one quite 
manageable, at least in terms of the rectilinear geometry used herein.  The operation of the 
independent sub-set property will be made clearer below with illustrations in terms of mode 
order/frequency plots. 
 
As an historical note, recall that excitation of pressure waves by blades vibrating at non-integer 
multiples of blade passing frequency is of great interest in the field of rotor blade flutter and has 
been studied extensively in the past.  In several publications, Owczarek tracked pressure pulses 
bouncing from rotor to stator in a time domain approach and found expressions for the allowed 
frequencies (e.g., ref. 9).  Mengle, ref. 10,  studied rotor blades vibrating at given frequency and 
interblade phase in the presence of adjacent stators.  He found that, after successive reflections 
between rotor and stator, the same limited set of frequencies and mode orders keeps being 
generated.  Mengle’s analysis was in the frequency domain and led to formulas similar to those 
derived below for broadband application.  Hall & Silkowski, ref. 11, went beyond Mengle’s 
kinematics with the flutter problem and computed actual rotor blade loading levels with 
accounting for reflections from adjacent stators. 

Mode Order/Frequency Plots 
The plot shown in Figure 9 was constructed for a fan with 18 blades and 45 vanes and applies to 
the axial flow regions upstream of the rotor and downstream of the stator.  In general, the cuton 
boundaries can be determined by setting the argument of the root in Equation 3.13 to zero: 
 
 2 2 2 2ˆ ˆ( ) ( ) 0y xmM mω β ν− + − + =  (4.14) 
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where  ˆ ˆandrR a R hω ω ν µπ= =  .  This can be re-arranged as follows 
 
 2 2 2 2 2 2 2ˆ ˆ ˆ( )x y xM mβ ω ω β β β ν= + +  (4.15) 
 
which is the equation of a conical surface enclosing the cut on values of  m  and  ν̂  for any 
frequency.  (To visualize the cone, recognize in Figure 9 that the cone axis is the  ω̂   coordinate, 
the  ν̂  axis is out of the paper, and that the plot is a cut through the  ν̂ =0  plane.)   Note that the 
lower half of the conical surface is included in the analysis but is not shown in Figure 9. 
 
In the  ν̂ =0  plane, Eq. 4.15 reduces to equations for straight lines with slopes My ± βx .  
 
 ˆ ˆ( ) , 0y xM mω β ν= ± =  (4.16) 
 
In Figure 9, the slopes are  ±βx since  My = 0 .  The large dots on the plot represent permitted 
modes according to Eq. 4.13, for a particular values of  ωo and  q.  Scattering at the stator is 
along the dashed lines; this is at constant frequency (constant  n ) and varying  k .  Scattering at 
the rotor is along the dotted lines; this is at constant  k  and varying  n .  It is easily deduced that 
these lines have slope  MT  and that this slope is less than that of the co-rotating cutoff boundary, 
My +βx , for cases where the flow is subsonic relative to the rotor blades. 
 
Figure 10 has exactly the same information as Figure 9 but presented in the rotor reference 
frame.  Frequency at the rotor is given by Eq. 4.10.  Changing reference frames does not change 
what modes are cut on; it only changes their apparent frequencies. 
 
Behavior of the independent modal sub-set is now established in Figure 9:  with the stator 
scattering along horizontal lines and the rotor scattering along the diagonal lines, any mode 
inside the cuton limits can communicate with any other such mode through multiple reflections 
between rotor and stator.  However, only those modes and frequencies are connected with each 
other.  Figure 9 was plotted with  q  = 0  and the broadband frequencies half way between the 
BPF harmonics (ωo = B1Ω/2).  Other independent mode sets can be found by taking the dashed 
and dotted scattering lines as a rigid pattern and moving the pattern vertically on the page to 
cover different frequencies and horizontally to cover different  q’s.  Each new position (each new  
q  and  ωo ) generates a new set of modes that scatters only among themselves.  Furthermore, for 
radial orders greater than zero, the pattern of dashed and dotted scattering lines can be held 
above the plane of Figure 9 to represent cutting the conical surface for µ = 1, 2, 3, … for more 
independent mode sets.  Note, with this example for 45 vanes,  q  can take on all integer values 
from  0  to 44.  The broadband frequency variable is continuous so that any number of ωo’s could 
be used; however, a broadband spectrum could be reasonably well defined by frequencies at the 
BPF multiples and halfway in between. 
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Figure 9.  Mode order/frequency plot for fan in axial flow at  Mx  = 0.5.  B1 = 18, B2 = 45, and MT = 0.5.  Also, q = 0 
and ωo = BPF/2.  Presented in stator reference frame. 
 

6040 20  0-20 -40 -60 

4,1

20

40

60

n=1

n=2

n=3

3,12,1

5,2

6,1

6,23,2 4,2 

1,0

n=5

k=1 

k=2

k=0
CIRCUMFERENTIAL MODE ORDER - m

Frequency in Rotor Frame
ˆrω

n,k 

0,0 2,0 

1,1 5,1 

n=0 

n=4

n=6

COUNTER-
ROTATING 
CUTOFF 

CO-ROTATING 
CUTOFF

 
 
 
Figure 10.  Same information as above but presented in rotor reference frame. 
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The plots just discussed were generated for axial flow, which would apply upstream of the rotor 
and downstream of the stator.  Between blade rows, swirl affects the cuton boundaries as shown 
in Figure 11.  Both the swirl flow and axial flow boundaries are plotted.  The gray region in the 
plot indicates modes that propagate between rotor and stator but are cut off upstream and 
downstream.  These modes are “trapped”; that is they can bounce back and forth between blade 
rows, possibly amplifying, but cannot escape.  However, they do scatter to higher mode orders 
and frequencies that do propagate and contribute to the radiated noise.  This mode trapping and 
up-scattering was first noted in the context of tone noise by Topol, Mathews, and Holheubner 
(Ref. 12), studied and modeled extensively by Hanson ( Ref. 1), and incorporated in a quasi 3D 
prediction scheme (TFaNS) by Topol (Ref. 5).  For certain vane/blade ratios, mode 
trapping/frequency scattering dominates tone generation in fans.  In the future, numerical studies 
are planned to find how important this mode trapping phenomenon is for broadband fan noise. 

The next 3 sections of this report are devoted to building a broadband noise prediction scheme 
using the modal scattering kinematics described above.  Section 5 develops a notation for modes 
(via Fourier transforms) compatible with the scattering rules of this section.  Then Section 6 

derives equations for coupling rotor and stator using a matrix of scattering coefficients and 
vectors of modal amplitudes for the scattered waves.  Section 7 relates a standard turbulence 
spectrum to a source vector, which drives the coupled equations, and presents working equations 
used in the prediction code CupBB.  Sample calculations are shown in Section 8. 
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Figure 11.  Mode order/frequency plot showing cutoff limits for both the axial flow region (upstream of 
rotor and downstream of stator) and for the swirl region (between rotor and stator).   In the swirl region, 
My = 0.4.  In the shaded region, modes can reflect back and forth between rotor and stator but cannot 
propagate beyond the blade rows. 
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The prediction scheme is based on the independent mode set property described above so as to 
minimize the required computer resources.  Rather than treating broadband prediction as one 
very large coupling problem, it is broken down into many small coupling problems via loops on 
frequency ωo , radial mode order  µ , and the mode order shift index  q .  Each of these smaller 
analyses finds amplitudes of all of the modes and frequencies in a mode subset (as shown, for 
example, in Figure 9) by solving a series of simultaneous equations (derived in Section 6) for 
blade row scattering.  Excitation for the system is given by modes of the turbulence input at all 
the same orders and frequencies simultaneously. 
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SECTION 5 
FOURIER TRANSFORMS AND STANDARD WAVESET NOTATION 

 
The preceding section established the scattering rules for broadband rotor/stator interaction.  In 
this section, we develop a notation system for Fourier transforms tailored to those rules and 
designed to facilitate development of the code for noise prediction. 
 
Recall that the totality of modes that participate in the interaction can be broken down into 
independent sub-sets that scatter only among themselves.  And recall from Section 4 that for  
excitation with a given frequency offset  ωo, mode offset  q, and radial order µ, the set of 
permitted frequencies and circumferential mode orders is given by 
 

 1

1 2

frequency : , ... 1, 0, 1, 2, ...
mode order : ... 1, 0, 1, 2,...

o nB n
m q nB kB k
ω ω= + Ω = −
= + − = −

 (5.1) 

 
i.e. frequencies are separated by blade passing frequency and circumferential mode orders are 
restricted to the values of  m  resulting from integer values of the rotor and stator scattering 
indices,  n  and  k  as shown in Figure 9.  Thus, in the computer code, we can set up loops on  ωo,  
µ,  and  q  and solve a relatively small coupling problem for scattering on  n  and  k  for each of 
these combinations.  In each case, the input is a vector of turbulence modes for all  n  and  k  and 
the response is found simultaneously for the acoustic modes with the same  n’s  and  k’s .   
  
The pressure and vortical wave systems are treated separately below. 
 

Pressure Waves 
Background flow for the unsteady interactions will be divided into 3 distinct regions as shown in 
Figure 3 and counted by the index  r : 
 
   r = 1: upstream of rotor 
   r = 2: between rotor and stator 
   r = 3: downstream of stator 
 
Furthermore, in each region, there are 4 distinct wave types (or families) counted by index  T : 
 
   T = 1:  Upstream-going pressure waves 
   T = 2:  Downstream-going pressure waves 
   T = 3 and 4: Two independent sets of vortical (convected) waves 
 
These indices are used to express pressure waves ( T = 1 or 2 ) in region  r  as a typical Fourier 
integral 

 ( , ) ( , )T
r r i t
Tp t P e dωω ω

+∞ −
−∞

= ∫x x  (5.2) 

 
To coordinate with the frequency scattering rule, we break the frequency axis into segments each 
BPF long 
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 1 1( )
10

( , ) ( , ) o
B i nB tr r

T T o o
n

p t P nB e dωω ω
∞ Ω − + Ω

=−∞
= + Ω∑ ∫x x  (5.3) 

 
and then further expand the Fourier transform as follows to coordinate with the radial and 
circumferential scattering rules 
 

2 1
[ ( ) ]

1 1
0 0

( , ) ( ) cos( )
r r
xTnk T

B
zi k x x mr r

T o o T qk o h
q k

P nB p P nB e µπφ
µ

µ
ω ω

−∞ ∞
− +

= = =−∞
+ Ω = + Ω∑ ∑ ∑x  (5.4) 

 
where  po  is a reference pressure taken to be the sea level, standard day value.  r

Tx   is the  x  
reference location for the type  T  waves in region  r.  We have an independent scattering 
problem for each combination of  ωo , µ , q.  The solution to each of those scattering problems 
gives 1( )r

T qk oP nBµ ω + Ω  for a range of  n’s and  k’s  as shown in the mode/frequency plot of 
Figure 9. 
 
We will solve for only a small number of  ωo’s and they will be discretized as  ωj .  For example, 
if we are satisfied to discretize the frequency axis with points at the BPF harmonics and points 
midway between, we would use 

 1 1

2 1

0.5B
B

ω
ω

= Ω
= Ω

 (5.5) 

 
Along the frequency axis represented below, the simultaneous solution for  ω1  would find the 
spectral levels for all frequencies marked by  ×  and the solution for  ω2  would find the levels for 
the frequencies marked by  • . 
 
  •----×----•----×----•----×----•----×----•----×----•----×---- 
  0             1            2             3             4             5  frequency in BPF orders 
 
The velocity components for the 2 pressure wave types (and the vortical waves) can be written in 
form parallel to Eq. 5.3 as follows. 
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∞ Ω − + Ω

=−∞
∞ Ω − + Ω

=−∞

= + Ω

= + Ω

= + Ω

∑ ∫

∑ ∫

∑ ∫

x x

x x

x x

 (5.6) 

where 
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 (5.7) 

 
Later, we will need to express the velocity transforms in terms of the velocity perturbations to 
represent turbulence (i.e. to invert Eq. 5.6 for T = 3, 4).  These can be found in the usual manner 
from Eqs. 5.6 and 5.7 by exploiting the orthogonality of sinusoidal and exponential functions.  
For example, the transverse velocity transform is 
 

( )
1 2 0

1( ) ( ) cos( )
4

D Tnk
T T

m
x R

R h i k x yr r
qk o R

o

zV nB v e dx dy dz
hRa hU

π
µ π

µ

µπω
π ε

∞ − +
−∞ −

+ Ω = ∫ ∫ ∫ x
% %

% % % %  (5.8) 

 
where  εµ = 1 for  µ = 0  and = ½  for  µ > 0 .  x%  =( , ,x y z% % ) is the fluid-fixed coordinate.  T

rv%  is 

the velocity represented in the fluid-fixed frame, i.e. ( ) ( , )T T
r rv v t t= +x x U% % %  .  The transform  

1( )T
r

qk oU nBµ ω + Ω  of the axial velocity is the same but with  T
rv%   replaced by  T

ru%  . 
 
[Note that in this type of waveform analysis, the integral in Eq. 5.8 will not converge if the 
extent of the velocity field is infinite in the  x  direction.  One procedure for dealing with this is 
to set the perturbation velocity to zero outside of a region given by  -Uτ < x < Uτ  where 2τ is the 
time for the block of flow to pass the cascade.  This guarantees convergence of the integral.  
When the desired energy spectrum is found, it can be divided by  2τ  to find the power spectrum. 
Then we can take the limit as  τ  approaches infinity.]  
 
In the following, we define some non-dimensional quantities based on a representative radius  R.  
Parameter  R  is a constant for the problem and can be thought of as a scaling parameter that 
brings the notation for our rectilinear representation of the fan closer to notation used in full 3D 
annular representations.  Thus, from Eqs. 3.13 and 3.14 the axial wavenumber becomes 
 

 2 2 2 2
2

1ˆ ˆˆ ˆ( ) ( ) ( )Tnk Tnk
r r r r r
x x x y y x

x
k k R M mM mM mω ω β ν

β
⎡ ⎤≡ = − + − + − +⎢ ⎥⎣ ⎦

m  (5.9) 

with the upper,lower sign going with  T = 1,2  and from Eq. 3.7 
 

 ˆˆT
Tnk Tnk
r r r r

x x y
r

R M k M m
a
λ ωΛ ≡ = − + +  (5.10) 

with  ( )1 1ˆ / o r
r tBR a n B Mωω ω Ω= = +  where r

t rM R a= Ω  is the tip rotational Mach number and 

r
xM and  r

yM  are the axial and swirl Mach numbers.  All Mach numbers are based on local 

sound speed  ar  in the regions counted by  r.  
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In defining the standard wave sets, we deal with defining components and associated 
components.  The pressure waves are defined in terms of the pressure amplitude coefficients on 
the right hand side of Eq. 5.4.  The associated acoustic velocity components can be related to the 
pressure coefficients by inspection of Eqs. 3.15:  
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1 1

1 1
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 (5.11) 

 
Thus, if 1( )r

T qk oP nBµ ω + Ω  were known, the pressure field could be constructed from Eqs. 5.3 

and 5.4 .  In fact, in Section 6, the 1( )r
T qk oP nBµ ω + Ω  transforms with ranges of the indices  r, T, 

n, k  will be used as elements of the system state vector similar to the Fourier coefficients in the 
state vector for the tone problem in Eq.2.5. 
 

Vortical Waves (T = 3, 4) 
Since vorticity is a 3D vector, it might appear that 3 components could be specified 
independently.  However, because the convected field satisfies the continuity equation  0∇ ⋅ =u , 
only 2 are independent.  In fact, for the  µ = 0  case, which corresponds to 2D flow, there is only 
one component. 
 
We deal with the  µ > 0  cases first and define 2 families as follows 
 
   T = 3 family:  has  v  and  w  components but no  u 
   T = 4 family:  has  u  and  w  components but no  v 
 
The  T = 3 family is defined via the transverse velocity component in a form parallel to the 
pressure wave families.  Thus, the  3 1( )r

qk oV nBµ ω + Ω ’s are the defining coefficients (that go 

into the state vector).  Again, the associated 3 1( )r
qk oW nBµ ω + Ω ’s are related through the 

continuity equation, w z v y∂ ∂ = −∂ ∂ .  Hence, 
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 (5.12) 
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The  T = 4 family is defined via the axial velocity.  Thus, the  4 1( )r

qk oU nBµ ω + Ω ’s are the 

defining coefficients (that go into the state vector).  The 4 1( )r
qk oW nBµ ω + Ω ’s are related 

through the continuity equation, w z u x∂ ∂ = −∂ ∂ , 
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 (5.13) 

 
 
Finally, we define the vortical waves for  µ = 0.   They only exist for the  T = 3  type.  We still 
choose to define these by the transverse component but now the associated component is the 
axial velocity via u x v y∂ ∂ = −∂ ∂   and the radial velocity is 0.   
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 (5.14) 

The reader can verify that the wave families defined above satisfy the continuity and momentum 
equations in each of the 3 flow regions and that the boundary conditions of periodicity in  φ  and 
flow tangency at  z = 0  and  h  are satisfied. 
 
In the above, wavenumbers for the convected waves are normalized (from Eq. 3.17) as follows 
 

 3 4
ˆˆ ˆ yr r

x nk x nk
x

mM
k k

M
ω −

= ≡  (5.15) 

 
In the next section, we will show how the defining components established above are used in the 
state vector and coupling equations. 
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SECTION 6 
SCATTERING COEFFICIENTS AND THE COUPLING EQUATIONS 

In this section, we develop the rotor/stator system coupling equations; these match the modal 
output of the stator to the modal input of the rotor and vice versa and show how the turbulence 
enters as a source, i.e. excitation, for the system.  This is all in terms of Fourier transforms of the 
acoustic and vortical perturbations – as if they were known.  Since, in fact, they are knowable 
only in a statistical sense, both the turbulence and resulting noise must be treated in terms of 
expected values of magnitudes of the Fourier transforms.  That subject is treated in Section 7 
where we show how to compute the power spectral density of the sound from the turbulence 
spectrum. 
 
In the preceding section, we developed expressions for all permitted perturbations in the 3 
regions under consideration:  

Region  r = 1  -  upstream of rotor 
Region  r = 2  -  between rotor and stator 
Region  r = 3  -  downstream of stator 

 
The waves are of 4 types: 

Type T = 1  -  upstream going pressure waves 
Type T = 2  -  downstream going pressure waves 
Type T = 3  -  vortical waves (first independent set based on v – velocity component) 
Type T = 4  -  vortical waves (second independent set based on u – velocity component) 

 
Perturbations were expressed in Fourier expansions.  If the Fourier coefficients were known, the 
flow would be completely defined from Eqs. 5.3  to 5.14.  The coefficients defining the waves 
are of the form 1( )r

T qk oP nBµ ω + Ω .  We form a state vector of these coefficients and compress 
the notation for convenience.  Thus, for each region  r , 
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 (6.1) 

 

The ordered array of the  ( , )T
rA n k ’s is the state vector  

A .  The n’s  run over user-specified frequency limits 
(from –NH to +NH).  The k’s  run over ranges 
determined by cuton of the acoustic waves and decay  
of the turbulence spectrum.  The  µ’s , q’s , and  ωo’s  
are not needed in the state vector notation because they 
are constant parameters for each coupling sub-
problem. 
 

A4
1

A3
1

A2
1

A1
2

A3
2

B3
2

ROTOR  
Figure 12.  Sketch to explain rotor scattering 
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To help understand the structure of the coupling equations, consider the scattering of modes by 
the rotor shown in Figure 12.  First, note in general that output waves are the sum of scattered 
waves and prescribed waves (the source, or turbulence waves).  We focus on the output vortical 
waves (Type 3) in region 2 (to the right of the rotor) and what contributes to them.  These can be 
scattered into from each of the 4 input wave types and that action is denoted by scattering 
coefficients as follows. 
 

 

2 22 2 21 1
3 31 1 32 2

21 1 21 1 2
33 3 34 4 3

( , ) ( , ; , ) ( , ) ( , ; , ) ( , )

( , ; , ) ( , ) ( , ; , ) ( , ) ( , )
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S n k n k A n k S n k n k A n k B n k

⎡′ ′ ′= +⎣

⎤′ ′ ′+ + +⎦

∑
 (6.2) 

 
This meaning of this equation is that the Type 3 vortical waves in region 2 come from scattering 
of the up-going pressure waves (T = 1) in region 2 and scattering of the Types 2, 3, and 4 waves 
in region 1.  The summation is on the  n  index since we found in Section 4 that rotors scatter on  
n  and not on  k.  We have also added  2

3 ( , )B n k′ .  These are source waves that are to be 
prescribed as excitation for the system.  Notation for the scattering coefficients is   
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       A = State Vector 
       B = Source Vector 
       S = Coupling Matrix 
Solution:        A = (1-S)-1 x B 

 

Figure 13. System coupling matrix 

 

System Equations: 
  A=SA + B 
Where: 
  A = State Vector 
  B = Source Vector 
  C = Coupling Matrix 
Solution: 
  A = (1-S)-1B 
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( , ; , )r r
T TS n k n k′
′ ′ ′  with the unprimed indices denoting input modes scattered from and the primed 

indices denoting output modes scattered into. 
 
Equation 6-2 can be generalized to treat the entire inlet/rotor/stator/nozzle problem as shown in 
Figure 13.  Equation 6.2 can be seen as the 7th  line of the matrix equation.  All of the other 
scattering coefficients are shown as well.  Dots indicate empty elements, or no scattering.  The 
next sections show how the stator and rotor scattering coefficients are computed.  (We ignore 
scattering from inlet and nozzle in this report but expect to address it in the future.) 
 

Computation of Stator Scattering Coefficients 
The stator acoustic element consists of the stator vanes themselves and an actuator disk which 
represents turning of the mean flow.  The jump in mean flow properties across the disk 
determines jumps in perturbation quantities via conservation of mass and momentum.  In this 
section we first treat scattering by the vanes and then later show how the actuator disk effect is 
added. 
 
To compute scattering by the stator vanes, note that the connection between input modes and 
output modes is through the upwash at the stator.  Thus, we need to find the upwash associated 
with each of the 4 input wave types.  Then, we need to find the amplitudes of each of the 4 
response modes to unit upwash.  The required scattering coefficients are formed from the 16 
combinations of input and output.  The upwashes associated with various wave types follow 
from the wave kinematics of Section 5 and are shown on the right in Table 1 under “Excitation”.  
The output mode amplitudes due to unit upwash are found using Glegg’s Wiener-Hopf cascade 
method (as explained later in this section) and are shown on the left in the table under 
“Response”.  Notation  ( , ; , )r r

T TS n k n k′
′ ′ is used for scattering by the vanes.  Its meaning is given 

by 
 ( , ) ( , ; , ) ( , )r r r r

T T T TA n k S n k n k A n k′ ′
′ ′′ ′←  (6.3) 

 
When the actuator disk is added, the coefficients will be modified and placed in the scattering 
matrix with the same notation.  For example, scattering of vortical waves into downstream 
pressure waves is given by 
 3 3 2 2

2 23 3( , ) ( , ; , ) ( , )A n k S n k n k A n k′ ′′ ′←  (6.4) 
 
The prime on the superscript on the LHS indicates that the coefficient does not yet apply to 
Region 3; this will be dropped when the actuator disk is included.  This coefficient for scattering 
of the type 3 vortical waves (with µ = 0) into down-going pressure waves can be constructed 
from elements of Table 1,  
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 (6.5) 

 
Derivations of the excitation and response factors in Table 1 are discussed in the next 2 sections. 
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TABLE 1 

FACTORS FOR STATOR SCATTERING COEFFICIENTS 
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µ>0 
2

3 2 2
4 2 2 2

2 2

ˆˆ ˆ cos sin2( , )
cos ˆ ˆˆ

nk c c nk
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oc nk

wiA n k K
g a

α γ θ ζ θπ
θ γ α ν
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µ>0 
2

2 4( sin ) ( , )nk

o

w
A n k

a
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Above, DT′nkk′  is the potential jump across the wake from Glegg’s theory (see Appendix A).  Subscripts nkk′  
indicate input waves with interblade phase 
 

 1 2
2

2 ,m m q nB kB
B
πσ = = + −  

and output waves with interblade phase 
 

 1 2
2

2 ,m m q nB k B
B
πσ ′′ ′ ′= = + −  

Also,  
 
 2 2ˆˆT Tnk x x nk yM k M mω′ ′′ ′ ′Λ = − + +  
and in 

 2
2 22

1ˆ ˆsin ( )cosT nk nk y
x

R m Mζ θ β ω θ
β

′ ′ ′⎡ ⎤′= ± +⎣ ⎦  

the upper, lower sign goes with  T ′  = 1,2.  Knk  is Glegg’s vorticity factor (K(γc) in Appendix B), which 
depends only on  n  and  k  (not on  k′ ).  The wavenumbers required for vortical response are 
 

 2 2 2 2
3 2 2

ˆ ˆˆ ˆ ˆ ˆˆ ˆ/ sin cos ( )
D

c nk x nk c cM k m H
µπγ ω α θ θ ν ζ γ ν′ ′ ′= = − + = = − +  
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Excitation Factors 
Here, as an example, we show how the excitation factor for down-going pressure waves at the 
stator is derived; this is the second item in the right column of Table 1.  The remaining excitation 
factors can be derived in similar fashion. 
 
The upwash at the stator due to the down-going pressure waves in region 2 is given by 
 
 2 2

2 2 2 2( , ) ( , ) sin ( , ) cosw t u t v tθ θ= − +x x x  (6.6) 
 
By using Eqs. 5.6 and 5.7, it can be shown that the coefficient of the upwash is 
 
 2 2

2 1 2 2 1 2( )sin ( )cosnk o qk o qk ow a U nB V nBµ µω θ ω θ⎡ ⎤= − + Ω + + Ω⎣ ⎦  (6.7) 

 
The  U  and  V  coefficients are related by Eqs. 5.11 to the  P  coefficient that defines the 
pressure wave.  When these are substituted into Eq. 6.7, the result is 
 

 
2

22 2 2
2 12

2 2 2

ˆ sin cos ( )nk o x nk
qk o

o o nk

w p k m P nB
a a a µ

θ θ ω
ρ

⎡ ⎤−= + Ω⎢ ⎥
Λ⎢ ⎥⎣ ⎦

 (6.8) 

 
The factor before the square brackets can be modified using  2

2 2 2a pρ γ=  where γ  is the ratio of 

specific heats (γ = 1.4 for air). Using this and replacing 2 2
2 1 2( ) with ( , )qk oP nB A n kµ ω + Ω  lead to 

 

 
2

22 2 22
22

2 2

ˆ sin cos ( , )
1.4

nk x nk

o nk

w k mA A n k
a P

θ θ⎡ ⎤−= ⎢ ⎥
Λ⎢ ⎥⎣ ⎦

 (6.9) 

 
which is the second item on the right in Table 1, as desired.  A2  and  P2  are speed of sound and 
pressure in region 2 normalized to sea level, standard day conditions. 
 
Response Factors 
These are the factors in the left column of Table 1 and are computed using Glegg’s Wiener-Hopf 
cascade method.  As an example, we derive the modal coefficient for upgoing waves from the 
stator due to unit upwash ( the first item in column 1 of Table 1). 
 
Appendix A adapts Glegg’s equations to duct coordinates and to our modal indices  n, k, and  µ .  
Equation A-43 gives the pressure wave scattered into mode  n,k′  due to upwash in mode  n,k  as 
 

 
2
1

2 2 [ ]2 2 2 1 1 1

2

ˆˆ
cos( )x nki k x m tnk nk nkk

nkk nk
nk

i a c D zp w e
g R h

φ ωπ ρ ζ µπ′ ′+ −′ ′ ′
′

′

− Λ=  (6.10) 

 
where we have replaced Glegg’s  ± superscript notation indicating up/down going waves with a 
subscript 1, since we are addressing upstream going waves.  Upon comparison with Eq. 5.4, we 
can write for the modal coefficient of the upgoing wave, at frequency 1o nBω ω= + Ω  
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2 22 2 22 1 1 1

1 1
2

ˆˆ
( ) nk nk nkk

qk o nk
o nk

i a c DP nB w
p g Rµ

π ρ ζω ′ ′ ′

′

− Λ+ Ω =  (6.11) 

 
Note that the phase in Eq. 6.11 is based on an  x-origin at the leading edge.  In code CupBB, 
origins are shifted to the appropriate reference planes after coupling to the actuator disks. 
 
In Eq. 6.11, we again  apply  2

2 2 21.4a pρ =   and replace 2 2
1 1 1( ) with ( , )qk oP nB A n kµ ω′ ′+ Ω , 

leading to 

 
2 2

2 1 1 12 2
1

2 2

ˆˆ1.4( , ) nk nk nkk nk

nk o

D wi c PA n k
g A R a

ζπ ′ ′ ′

′

Λ−′ =  (6.12) 

 
This is the response factor giving the modal coefficients for up-going waves from the stator due 
to unit upwash.  It is the first item in the left column of Table 1, which was to be found.  The 
factor relating to downstream pressure wave response follows immediately.  The response of the 
vortical waves can be found from Equations in Appendix B. 
 
 
Rotor Scattering Coefficients 
Derivation of the rotor scattering coefficients proceeds in the same manner as that for the stator.  
The 16 groups of coefficients are formed from factors in Table 2.  The 4 inputs in the right 
column drive the 4 responses in the left column.  The resulting coefficients are denoted by  

( , ; , )T T
r rS n k n k′
′ ′ .  They are then modified by the effect of the rotor actuator disk and placed in the 

system scattering matrix  S . 
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TABLE 2 

FACTORS FOR ROTOR SCATTERING COEFFICIENTS 
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Above, DT′nkn′  is the potential jump across the wake from Glegg’s theory (see Appendix A).  Subscripts nkn′  
indicate input waves with interblade phase 
 

 1 2
2

2 ,m m q nB kB
B
πσ = = + −  

and output waves with interblade phase 
 

 1 2
2

2 ,m m q n B kB
B
πσ ′′ ′ ′= = + −  

 
 2 2ˆˆT Tn k x x n k yM k M mω′ ′′ ′ ′Λ = − + +  
and 

 2
1 1 12

1ˆ ˆsin ( ( ))cosTT n k n k r y
x

R m M Mζ θ β ω θ
β

′ ′ ′⎡ ⎤′= ± + −⎣ ⎦  

where  2 2
1 11 Mβ = −  and  M1  is relative Mach number at the rotor and the upper, lower sign goes with the 

T=1,2 wave.  Knk  is Glegg’s vorticity factor (K(γc) in Appendix B), which depends only on  n  and  k  (not on  
n′ ).  And the wavenumbers required for vortical response are 
 

 2 2 2 2
1 3 1 1

ˆ ˆˆ ˆ ˆ ˆˆ ˆ/ sin cos ( )
D

c r n k x n k c cM k m H
µπγ ω α θ θ ν ζ γ ν′ ′ ′= = − + = = − +  
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Combining Blade and Vane Elements with Their Actuator Disks 
The coupling scheme shown in Figure 13 treats 4 acoustic elements: Inlet, Rotor, Stator, and 
Nozzle.  Only the rotor and stator are addressed in this report; inlet and nozzle reflection and 
transmission must be treated in a separate study.  Figure 14 shows the mean flow entering the fan 
stage axially, turning at the rotor, and straightening back to axial at the stator.  To deal with this 
turning, actuator disks are combined with the rotor and stator blade rows.   Appendix C derives 
the actuator disk equations based on linearized equations for conservation of mass and 
momentum; jumps in background flow properties cause jumps in the wave modal amplitudes.   
 
Code CupBB models the background flow via 1D isentropic (lossless) flow equations and the 
standard equation for action of the rotor 

 (tangential velocity) (total temperature)
wheel speed

pC
∆ = × ∆  (6.13) 

 
Ambient conditions correspond to a standard day at sea level.  The user inputs inlet axial Mach 
number, rotor rotational Mach number, and stage pressure ratio; the code calculates the 
remaining mean flow quantities based on isentropic flow and Eq. 6.13 assuming axial flow out of 
the stator. 
 
This section shows how the actuator disk scattering factors are combined with the scattering 
factors just found for the blade rows to produce a combined rotor/actuator disk element and a 
combined stator/actuator disk element.  These are the elements that are used in the coupling 
matrix of Figure 13. 
 
Figure 14 shows the rotor with its actuator disk, the stator with its actuator disk, and all of the 
wave families included in the coupling scheme.  As described earlier, the  A’s are elements of the 
state vector (to be found) and the   B’s are elements of the source vector (to be prescribed from a 
turbulence model).  The  A’s  and  B’s  are further subscripted on the scattering indices  n  and  k.  
The derivation below is in the context of the stator but the method of combining a blade row with 
its actuator disk is the same for the rotor as for the stator. 
 
The lower part of Figure 14 shows the stator element broken down into the vane row and the 
actuator disk.  Scattering equations for the vane row are 
 

 

1 12 2 13 3 14 4 11 1 1

2 22 2 23 3 24 4 21 1 2

3 32 2 33 3 34 4 31 1 3

4 42 2 43 3 44 4 41 1 4

a aa a aa a aa a ab b a

b ba a ba a ba a bb b b

b ba a ba a ba a bb b b

b ba a ba a ba a bb b b

A S A S A S A S A B

A S A S A S A S A B

A S A S A S A S A B

A S A S A S A S A B

= + + + +

= + + + +

= + + + +

= + + + +

 (6.14) 

 
and for the actuator disk are 
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1 12 2 13 3 14 4 11 1

2 22 2 23 3 24 4 21 1

3 32 2 33 3 34 4 31 1

4 42 2 43 3 44 4 41 1

b bb b bb b bb b bc c

c cb b cb b cb b cc c

c cb b cb b cb b cc c

c cb b cb b cb b cc c

A S A S A S A S A

A S A S A S A S A

A S A S A S A S A

A S A S A S A S A

= + + +

= + + +

= + + +

= + + +

 (6.15) 

 
These can be placed into a matrix system similar to that in Figure 13 as follows 
 
 

  (6.16) 
 
 
 
With the block matrix notation indicated by the shaded boxes Eq. 6.16 reduces to 
 

 

a a b a
AA AB

b a b c b
BA BB BC

c b c c
CB CC

A S A S A B

A S A S A S A B

A S A S A B

= + +

= + + +

= + +

 (6.17) 

 
The middle line of Equation 6.17 can be written 
 
 (1 ) b a c b

BB BA BCS A S A S A B− = + +  (6.18) 
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Figure 14.   Rotor/stator actuator disk system. 



NASA/CR—2001-211136/REV1 39

and solved for  Ab  via 
 
 b a c b

BA BCA E S A E S A E B= + +  (6.19) 
where 
 1(1 )BBE S −= −  (6.20) 
 
Substitution of Equation 6.19 into the first and last lines of Equation 6.17 eliminates the scattered 
waves in the middle  (b)  region 
 

 
( )

( )

a a c a b
AA AB BA AB BC AB

c a c b c
CB BA CC CB BC CB

A S S E S A S E S A B S E B

A S E S A S S E S A S E B B

= + + + +

= + + + +
 (6.21) 

or 
 

 
a a a b

AA AB BA AB BC AB
c c b cCB BA CC CB BC CB

A S S E S S E S A B S E B
S E S S S E SA A S E B B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= × +⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (6.22) 

 
In the current application, we will not prescribe any source waves in the  “b”  region so that 
finally 
 

 
a a a

AA AB BA AB BC
c c cCB BA CC CB BC

A S S E S S E S A B
S E S S S E SA A B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= × +⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (6.23) 

 
 
This is the desired form for combining the stator vanes and the stator actuator disk into a single 
acoustic element.  The scattered waves in the region between the vanes and the disk have been 
eliminated from the equations so that the input/output properties of the stator element are 
completely specified by the  Aa  and  Ac  state vector components.  To apply this scheme in the 
computer code CupBB, we first compute the scattering coefficients for the vanes with uniform 
background flow corresponding to region 2 (between blade rows) and place these into the  S  
array as in the example of Eq. 6.5.  Then we compute the scattering coefficients for the actuator 
disk according to theory in Appendix C and place them in array  D .  Next, elements of  S  are 
placed into block matrices  SAA, SAB, SBA, SBB and elements of D  are placed into SBB, SBC, SCB, 
SCC  per Eq. 6-16.  Equation 6-23 is applied to find an array to replace the old array  S .  Finally, 
sections of  S  are placed into the stator location of the system scattering matrix of Figure 13.  
The same procedure is applied to the rotor blades and their actuator disk to complete the system 
scattering matrix.  
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SECTION 7 
EQUATIONS FOR SOUND POWER SPECTRA 

 
This section develops equations required to compute spectra of sound power propagating 
upstream and downstream from the coupled blade rows.  The development is in 5 stages: 
 

1. Derive equations for sound power in terms of the Fourier transforms defining the 
standard wave sets in Section 5. 

2. Derive equations to compute those Fourier transforms in terms of the inverted coupling 
matrix and the source vector elements. 

3. Develop equations for the source vector expected values in terms of 3D turbulence 
spectra. 

4. Adapt a standard turbulence spectrum (the Liepmann spectrum) to the ducted flow 
environment. 

5. Assemble the working equations for programming. 
 

Sound Power Equations in Terms of Standard Wave Set Coefficients 
 Power associated with acoustic perturbations is evaluated according to the energy flux 
vector given by Goldstein (Ref. 13).   

 ( )r
r

p ρ ρ
ρ

⎛ ⎞
= + ⋅ +⎜ ⎟
⎝ ⎠

I u U u U  (7.1) 

This is the instantaneous energy per unit area per unit time in the direction given by  I . The 
perturbation pressure, density, and velocity are  p, ρ, and u .  ρr  and  U  are the density and 
velocity of the background flow in Region r.  The energy flux vector is space and time 
dependent.  We are interested in its component in the  x  direction.  Forming  Ix = I⋅ix  and 
applying  2/ rp aρ =   lead to 

 2 2 2(1 ) x
x x r r x r r y x y

r r

MI M pu p a M u a M uv M M pv
a

ρ ρ
ρ

= + + + + +  (7.2) 

 
for the power flux in the  x  direction.  Mx  and  My  are Mach number components in the axial 
and tangential directions relating to the background velocity  U = (U, V, 0) . 
 
 Recall from Section 5 that the expressions for perturbation acoustic quantities are 
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 (7.3) 
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Before substituting these into Eq. 7.2, note that, in our convention, the pressure and velocity are 
pure real by virtue of using 2-sided series.  I.e. imaginary parts in the upper and lower halves of 
the n series cancel.  Thus,  p2=pp* , and we use  pp* , for convenience in the manipulations that 
follow. 
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  (7.4) 
We need to average this over time and then over the space variables  z  and  φ .  For the time 
average, recall that the Fourier transforms apply to a block of flow passing through the cascades 
in the period  -τ  < t < τ  .  Outside of that time range, the perturbations are temporarily set to 0.  
We still integrate over all time since it produces a Dirac delta function 
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This gives the energy due to that block of flow.  Then we divide by 2τ  to get the average 
energy/unit time, i.e. power.  Similarly, the average over  z  requires 
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where  εµ = 1 for  µ = 0 and  = ½  for µ > 0 .  Also, the average over  φ   yields  δqq′ δkk′ .  These 
operations eliminate all the cross terms in Eq. 7.4 with the result 
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By applying definitions of the wavenumbers in Eqs. 5.9 and 5.10, Fnk  can be reduced to 
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where  E  is the cuton discriminator 
 
 2 2 2 2ˆ ˆ( ) ( )y xE mM mω β ν= − + − +  (7.10) 
 
This is positive for this application, since only cut on waves carry power.  The  m  sign in the 
numerator of Eq. 7.10 indicates that energy upstream travels in the negative  x  direction and 
downstream travels in the positive  x  direction.  This sign is dropped henceforth. 
 
Now, since the expression for  xI   is an integral over frequency, we identify the integrand as the 
power spectral density of acoustic intensity. (We still have to multiply by duct area and 
bandwidth to get sound power.)  We define the area averaged intensity spectra upstream and 
downstream as 
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 (7.11) 

 
for each independent mode sub-set defined by  ωo , q , and  µ .  Next, we will find the required 

expressions for  1 2

2 21 3
1 1( ) and ( )qk qko oP nB P nBµ µω ω+ Ω + Ω  in terms of the source vector 

elements. 
 

Fourier Coefficients in Terms of the Coupling Matrix and Source 
The terms  1 2

1 3
1 1( ) and ( )qk qko oP nB P nBµ µω ω+ Ω + Ω  are elements of the state vector developed 

in Section 6.  Specifically,  
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 (7.12) 

 
are the coefficients for upstream-going pressure waves in region 1 and downstream-going 
pressure wave in region 3.  The coupling equation was shown to be 
 
 = +A S A B  (7.13) 
 
where  A  is the source vector, S is the scattering matrix, and  B  is the source vector.  This could 
be inverted to find  A  as a function of  B 
 
 1( )−= −A 1 S B  (7.14) 
 
although a more efficient solver has been developed.  In this section, we write out the equations 
for the desired elements of the state vector in terms of the elements of  B  that relate to turbulent 
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flow into the rotor and stator.  In the following section, we will express those elements from  B  
in terms of the turbulence spectrum. 
 
We treat turbulence entering the rotor and stator as the source.  The relevant elements in the 
source vector are 
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which are coefficients of the 2 vortical wave types (3 and 4) in region 1 (entering the rotor) and 
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which are the same for vortical flow entering the stator from region 2.  (For radial mode index µ 
= 0, the Type 4 waves are absent.)  We denote the matrix of the inverted system by  C  where 
 
 1( )−= −C 1 S  (7.17) 
 
In terms of the elements of  C , the coefficients for the upstream-going pressure waves become 
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  (7.18) 
 
Rather than using conventional matrix notation, we denote the matrix elements by  
C(R’,T’,n’,k’;R,T,n,k) .  We have returned to the convention where primed indices denote waves 
scattered into and unprimed indices denote waves scattered from.  Hence, indices  R’  and  R are 
the regions scattered to and from (see page 29) and T’  and  T  are the wave types scattered to and 
from (again, see page 29).  In Eq. 7.18, the B4  terms are absent in the case of  µ = 0.  We will not 
bother to write out the corresponding form for downstream going waves until the end of this 

section.  We can not know '

21
1( ' )T qk oP n Bµ ω + Ω  in general but we can deal with its expected 

value (or ensemble average)  '

21
1( ' )T qk oP n Bµ ω + Ω  .  Squaring the magnitude of Eq. 7.18  and 

taking expected values results in many cross terms which we will justify eliminating.  The cross 
terms between regions 1 and 2 vanish because we assume the turbulence entering the rotor to be 
independent of that entering the stator.  This leaves 
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  (7.19) 
 
In the following section, we will see that the  n,n″  and  k,k″  cross terms also vanish so that Eq. 
7.19 can be written 
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  (7.20) 
In Eq. 7.20, it can be seen that the 2nd and 3rd lines on the right are conjugates of each other.  The 
same is true of the 5th and 6th lines.  Hence, Eq. 7.20 reduces to 
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  (7.21) 

Source Elements in Terms of Turbulence Spectra 
We will treat one of the source expectations on the right of Eq. 7.19 in detail and then write 
down the rest by inspection.  [We are going back to Eq. 19 because we still need to show that the 
n,n″  and  k,k″  cross terms cancel.]  Including the  πεµ/τ  from Eq. 7.7, we use  A  to denote 
 

 1 1* 1 1*
3 3 3 1 13( , ) ( , ) ( ) ( )qk o oqkA B n k B n k V nB V n Bµ µ

µ µ
πε πε

ω ω
τ τ ′′′′ ′′ ′′= = + Ω + Ω  (7.22) 

 
and we proceed by inserting the inverse transform of the  V’s  given in Eq. 5.8. 
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Recall that  1

3( )v x% %   is the  y  turbulence velocity component represented in region 1 in the fluid-
fixed frame.  Now we change the position variables from “point 1/point 2” to “point/separation” 
via 
 
 ′ = +x x s% %  (7.24) 
so that 
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 (7.25) 

Then, 
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  (7.26) 
The sine term will vanish in the  z  integration.  In flow problems with no boundaries, the 
standard step at this point would be to recognize the expectation of the  v  product as the 
correlation function  1 1 1

3 3( ) ( ) ( )vvv v R+ =x x s s% % % %  and claim it to be a function only of the 

separation vector  s  (and not of the position vector x% ).  In bounded flows this is an 
approximation that we assume to be acceptable since the length scale turns out to be small 
(typically 2% to 4% of fan radius). 
 
We still have to deal with convergence of the  x  integral.  Recall that we are considering only a 
block of flow that is finite in the  x  direction and then taking the limit as the block size increases 
to infinity.  For this, we employ a “top hat” function  ( )J x%  which  = 1 for  -Uτ  < x%  <  Uτ  and 0 
otherwise.  Then the correlation is written 
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Use of this function permits us to separate the separation and position integrals as follows 
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where the effect of the top hat function appears in the limits of the  x%   integral.  In the first line 
of Eq. 7.28, we can replace the cosine with an exponential because the correlation function is 
even in  sz.  (In the parallel derivation involving  1 ( )uvR s , which we do not show here, it too is 
even in  sz , although odd in the  x  and  y  separation variables.)   In the second line, the  z  
integral yields  hεµ  so that 
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 (7.29) 

 
 
The  y%  integral produces a Kroneker delta 
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so that the  x%  integral becomes, after applying Eq. 3.17 for  3x nkk , 
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in the limit as  τ  approaches infinity.    With these results,  A  further reduces to 
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The 2 Kroneker deltas eliminate the  n,n″  and  k,k″  cross terms as claimed above in conjunction 
with Eq. 7.19.  If the fluid medium were unbounded, this integral could be recognized as the 3D 
turbulence spectrum from the standard form 
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We assume that this is an adequate approximation for the bounded case under consideration, so 
that 
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where the wavenumber components are 
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Finally, we normalize the turbulence spectra according to  
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for the 2 turbulence components entering the rotor from region 1, and 
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for the 2 components entering the stator from region 2.  Also, we have normalized the 
wavenumbers by  R  so that the axial wavenumbers 
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for regions 1 and 2, respectively.  Here the subscript 11 denotes  x-wavenumber in region 1 and 
subscript 12 denotes x-wavenumber in region 2. The circumferential and spanwise wavenumbers 
are 
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Now we can write down the 6 required source terms.  Since we only need the  n = n″  and  k = k″  
terms, we eliminate the Kroneker deltas.  For region 1, 
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and for region 2, 
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where  HD = h/R.  M1 =W1/a1  and  M2 =W2/a2  are the Mach numbers in regions 1 and 2 and  
Mx1  and  Mx2  are their axial components.   A1 = a1/ao  and  A2 = a2/ao . 
 
Choice of Turbulence Spectrum 
Since we do not have an algebraic form for turbulence spectra in ducted flow, we will simply 
adapt the Liepmann spectrum (Ref. 14) that has been used with some success in earlier studies. 
Unpublished analyses by Pratt & Whitney show that this spectrum matches wake data 
remarkably well. The forms for the Liepmann spectrum are 
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and 
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In our application of these spectra, we use a sum 
over the discrete spanwise  µ  modes from 0 to ∞ 
rather than an integral from -∞ to ∞ over a 
continuous wavenumber.  As suggested by Figure 
15, we are approximating the integral by a sum.  
Since we need only the right half of the discrete 
approximation, we must avoid over-emphasizing the  
µ = 0  term.  Thus, we take ½ the  µ = 0  term and 
the full values for the  µ>0  terms.  With this 
approach, the shaded area of the discrete cells 
approximates the area under the right side of the 
continuous curve. 
 

Working Forms for Sound Power Spectra 
We are now prepared to assemble the results from the above sections to obtain the forms for 
programming.  Sound power spectrum levels are obtained from Eq. 7.11 by multiplying by duct 
cross section area  2πRh , multiplying by bandwidth  2o BWω π∆ =  , and dividing by the power 
reference:  10-12  watts.  Furthermore, since we use only positive frequencies for calculations, we 
multiply by 2 to account for the lower half of the spectrum.   
 
The result for upstream sound power is at frequency denoted by  n″  is 
 

   µ

Figure 15.  Sketch to explain conversion of 
continuous wavenumber integration to 
discrete summation 
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This is summed over all of the n,k  source modes and over all of the  k’  modes scattered into for 
a given frequency  ωo+n’B1Ω .  Power level in dB is 10log10 of this quantity.  Ar denotes ambient 
speed of sound normalized by speed of sound for a sea level standard day.  Pr  is similarly 
defined for pressure. 
 
The corresponding form for downstream sound power follows immediately: 
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The working forms for the turbulence spectra are 
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for flow entering the rotor from region 1.  Note that the intensity and scale for region 1 are to be 
used.  µε = ½  for  µ=0  and  =1  for  µ>0.  L  is turbulence integral length scale normalized by 
duct effective radius  R , i.e.  L = ℓ/R. 
 
For turbulence entering the stator from region 2, 
 

2 22 5
2 12 3

2 2 32 2 2 2
1 2 3

2
12 3 ,2 22 5

2 2 3
22 2 32 2 2 2

1 2 3

2 5
2 12 2

2 2 32 2 2 2
1 2 3

2( )
1 ( )

ˆ
2( )

1 ( )

2( )
1 ( )

vv

x n k

uu

uv

K Kv L
W L K K K

K k
K Ku L K m q

W L K K K

K Ku L
W L K K K

µ

µ

µ

ε
π

ε
π

ε
π

⎫
⎛ ⎞ ⎪+⎜ ⎟Φ = ⎪⎜ ⎟ ⎡ ⎤ ⎪+ + +⎝ ⎠ ⎣ ⎦ ⎪ =⎪⎛ ⎞ + ⎪⎜ ⎟Φ = = =⎬⎜ ⎟ ⎪⎡ ⎤+ + +⎝ ⎠ ⎣ ⎦ ⎪

⎪⎛ ⎞ ⎪⎜ ⎟Φ = ⎪⎜ ⎟ ⎡ ⎤+ + +⎝ ⎠ ⎪⎣ ⎦ ⎭

K

K

K

1 2

3
D

nB kB

K H
µπ

⎧
⎪
⎪ + −⎨
⎪

=⎪
⎩

 (7.47) 

 
where intensity and scale for region 2 are to be used.  Under the assumption of isotropic 
turbulence, we have taken the  u-  and the  v-intensities to be the same. 
 
 The equations of Sections 6 and 7 have been programmed in Fortran in code CupBB.  Cases 
that exhibit the physical effects of interest typically run 4 to 6 hours on a 1 GigaHz personal 
computer. However, if high frequencies (significantly beyond the spectrum peak) are calculated, 
the running time can be much longer. 
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SECTION 8 
VERIFICATION AND APPLICATION OF THEORY 

 
This section provides verification of the new broadband coupling theory and then presents a 
series of calculated power spectra to demonstrate the capability of code CupBB and to 
demonstrate the importance of unsteady coupling and flow turning.  Conclusions will be 
summarized in Section 9. 

Verification 
 As described in the background section (Section 2), the new theory is a combination and 
extension of preceding theoretical treatments of tone and broadband noise generation.  Reference 
1 addressed unsteady coupling for tone noise in a 2D environment, with turning included via 
actuator disks.  References 2 and 3 addressed broadband noise generation by isolated 
(uncoupled) cascades.  Geometry and mean flow were uniform in the spanwise direction but use 
of a true 3D turbulence spectrum was enabled by Glegg’s Wiener-Hopf cascade analysis.  In the 
combined theory of this report, the turbulence spectrum, cascade response, and actuator disk 
response are 3D with respect to unsteady perturbations.  However, the mean flow and the 
geometry are constant in the spanwise direction. 

 Because broadband coupling has not been treated previously in the literature, there are no 
test cases for verification.  However, 3 tests were executed to provide some confidence in the 
code.  First, note that the coupling system described in Section 6 must reduce to the tone system 
of Ref. 1 in the case of zero spanwise wavenumber.  This has been carefully checked so as to 
verify (in the special case of µ = 0, i.e. 2D waves) the coupling, the treatment of actuator disks, 
and frequency and mode scattering. 
 
 The second verification was to run the new code with effects of coupling and flow turning 
“turned off” and to compare results with the older code (BBCascade) from Refs. 2 and 3, which 
does not treat coupling and flow turning.  The comparisons are very satisfactory as shown in 
Figures 16 and 17 for turbulent flow into a stator and rotor of a 22 inch diameter fan.  CupBB 
computations are denoted by solid symbols and BBCascade computations by continuous curves.  
Results are nearly identical at all frequencies computed.  Agreement was not necessarily 
expected at the lowest frequencies because the 2 codes treat boundary conditions differently.  
CupBB uses a modal description of the inflow and of the acoustic waves.  This results from 
enforcing periodicity in the  φ  direction and flow tangency on the hard inner and outer duct 
walls.  In contrast, BBCascade does not enforce either of these boundary conditions and hence 
uses continuous wavenumbers rather than modes.  Further numerical experiments, to be reported 
in the future, show differences at low frequencies for cases where the turbulence scale 
approaches the blade or vane span.  In any case, it is believed that Figures 16 and 17 verify 
correct behavior of the isolated cascade application of CupBB. 
 
 The third verification was to run the new code with all features enabled and check for 
qualitative agreement with test data.  Results shown in Figure 18 are for the same ADP scaled 
model case presented in Section 2, Figure 6.  Recall for that figure that the turbulence intensity 
and scale were adjusted to provide a “best fit” since we are attempting to represent the fan 
annulus by a single representative radius via the rectilinear theory.  Because the modeling with 
the new theory includes more features, it was necessary to re-check the data fit and adjust the 
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Figure 16.  Comparison of old and new codes for isolated stator cascade.  Turbulence RMS level was 
1.0% of the mean velocity and the integral scale was 1.0% of the fan mean radius 
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Figure 17.  Comparison of old and new codes for isolated rotor cascade.  Turbulence RMS level was 
1.0% of the mean velocity and the integral scale was 1.0% of the fan mean radius 
 
turbulence properties, as required.  Intensity was reduced from 2.0% to 1.8% and the integral 
scale was reduced from 3.5% to 3.2% of radius.  It was decided to match the downstream data as 
closely as possible and to let the upstream calculation follow, since other sources could be 
contributing to inlet noise.  The match to the downstream spectrum shape is excellent, 
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considering that the only free parameter governing shape is turbulence scale.   This shows the 
merit of using a 3D turbulence spectrum and a 3D cascade response function.  Earlier schemes 
based on 2D cascade theory and correlation length concepts don’t do this well. 
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Figure 18.  Calculation with fully coupled theory compared with scaled model ADP data from Figure 6.  
Relative to the isolated cascade calculation, the turbulence intensity was reduced from 2.0% to 1.8% and 
the integral scale was reduced from 3.5% to 3.2% of radius. 
 
 The significant under prediction in inlet noise should not be considered a failing of this 
theory.  Rather it is an indication that turbulent inflow at the stator is an unlikely source of inlet 
noise, now that we have a reasonable model for rotor transmission loss.  Recall that, when the 
isolated cascade theory was first brought on line, we were pleased with the upstream/downstream 
split (in comparison with data as shown in Figure 6).  This seems naïve now that the modeling is 
more complete.  The earlier results ignored the effect of the rotor with the result that conclusions 
regarding upstream noise were probably incorrect.  For this case, trailing edge noise from the 
rotor may dominate in the upstream direction. 
 
For reference, the remaining input used for the calculations if Fig. 18 are given below.  They 
represent conditions at the 85% radius for a run of ADP Fan#1 at 722 ft/sec tip speed. 
 
 Radius and Hub/tip ratio:  55.25 in and 0.479 
 Number of blades and vanes: 18 and 45 
 Gap/chord rotor and stator:  1.0 and 0.8 
 Axial spacing between rows: 2 full rotor chords 
 Axial Mach# and tip Mach#: 0.49 and 0.55 
 Pressure ratio:   1.242 
 Number of “Harmonics”:  NH = 14 
 Number of freq offsets:  # ωo’s = 2 
 qStep:    1 
 
 Regarding the independent mode subsets explained in previous sections, it can be seen that 
calculations in Figure 18 were made with 2 sets of 14 frequencies.  The first set was half way 
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between the BPF harmonics and the second set was interlaced with centers at the BPF 
harmonics.  All of the cut on radial modes were included at each frequency.  For circumferential 
orders, criteria are checked for both acoustic and vortical waves and then the more stringent 
criterion is used.  On the acoustic side, all cut on waves are included plus the cut off waves 
between blade rows that only decay to a prescribed level across the rotor/stator gap.  On the 
vortical side, the turbulence spectrum is examined and all waves are included with levels down 
to a prescribed fraction of the spectrum peak at each frequency.  The “prescribed levels” just 
mentioned are found by checking for convergence of the spectrum results. 
 
Since this calculation was very time consuming, various short cuts were explored as described in 
the next section.  All of the remaining figures were generated with variations on the ADP input 
given above. 
 

Variations in Computational Parameters 
First, we needed to verify that the number of frequencies ( n’s ) in the system equations can be 
truncated without compromising accuracy.  Figure 19 was computed with the same input as for 
Figure 18 except that NH was varied through the values 2, 6, 10, and 14.  Note that input waves 
range over positive and negative  n’s  so that 2NH+1  input frequencies are required.  (From 
symmetry, we can compute only the positive  NH  output frequencies and then double the result.)  
Even though the rotor scatters up and down in frequency, the figure shows that calculations are 
accurate up to whatever frequency is included in the coupled sub-sets.  Apparently, up-scattering 
is more important than down-scattering. 
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Figure 19.  Effect of varying NH on computed results at lower frequencies.  For NH = 2, the curves stop at 
764 Hz, for NH = 6 at 2292 Hz for NH = 10 at 3821 Hz, and for NH = 14 at 5349. 
 
 An experiment was performed to determine if modal averaging could be used to reduce 
computational effort.  Figure 20 was generated by stepping the  q  index in jumps of  qStep and 
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then multiplying the results by  qStep.  It can be seen that skipping every other circumferential 
mode (qStep = 2) has negligible effect at all frequencies.  Even skipping in steps of 5 produces 
good results from the peak of the spectrum and up in frequency.  This is important information 
since computation time goes inversely with  qStep.  Jumping in steps of 10 produces unreliable 
results and biases the results toward higher levels.  Based on these results, the remaining 
calculations for this report were made with qStep = 2.   
 
 It also seems likely that some radial orders could be skipped for further computational 
efficiency but this has not yet been verified.  Simply skipping every other radial mode and then 
multiplying by 2 did not provide good results.  Hence, a more refined scheme for radial mode 
averaging will be developed in future work. 
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Figure 20.  Effect of modal averaging with qStep = 1, 2, 5, and 10.  For qStep=1, all circumferential 
modes are included.  For qStep=2, every other mode is skipped and the results are doubled, etc. 
 

Importance of Coupling and Flow Turning 

Figure 21 was prepared for a direct comparison of the earlier isolated cascade technology and the 
new methodology with all features included.  The solid curves, are the data-matched results from 
Figure 18 and include all of the new capability in CupBB.  The dotted curves are the result of an 
isolated stator calculation with CupBB.  (Thus, the dotted curves are equivalent to calculations 
with the earlier code BBCascade of  Refs 2 and 3.)  It can be seen that the full methodology 
increases downstream noise by about 3 dB at all frequencies and increases the 
upstream/downstream split (or differential) from about 5 dB to about 10 dB. 

 A slight variation on this result is shown in Figure 22.  Here we represent the stator by the 
cascade plus the stator actuator disk (dotted curves).  The solid curves result from adding the 
rotor cascade (with its actuator disk) while maintaining the mean flow and turbulence at the 
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stator.  Again the aft noise increased and the upstream/downstream split is increased.  However, 
the aft increase is about 2 dB rather than the 3 dB of Figure 21. 
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Figure 21.  Calculations with CupBB for stator inflow turbulence.  Isolated stator calculation compared to 
calculaton with all features included (blades, vanes, and actuator disks).  This compares coupled vs 
uncoupled technology. 
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Figure 22.  Same as Figure 21 except that the actuator disk is included in the isolated stator calculation. 
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 CupBB treats rotor inflow turbulence as well.  The sample calculation in Figure 23 
compares the previous stator results with noise computed for the rotor with the same normalized 
intensity and scale for the turbulence.  Both inlet and aft levels increase suggesting greater 
radiation efficiency by the rotor.  Note the spectrum shapes for rotor and stator noise are almost 
the same although the high frequency parts of the spectra are a little flatter for the rotor inflow.  
Of course, we expect average turbulence intensity at the rotor face to be considerably less than at 
the stator face for typical turbofans.  Thus, Figure 23 does not imply that inlet noise is dominated 
by rotor inflow turbulence. 
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Figure 23.  Noise due to rotor inflow turbulence compared with noise due to stator inflow turbulence.  All 
of the model features were included for both calculations: 2 blade rows and turning via the actuator disks.  
The same normalized turbulence parameters were used for both cases. 
 
 
 
 
Finally, in a form parallel to Figure 22, we evaluate the effect of the stator on rotor noise.  The 
dotted curves in Figure 24 are for a rotor, represented by a cascade plus actuator disk, with 
turbulent inflow.  The solid curves result from adding the stator (with actuator disk) on the 
downstream side without changing the rotor mean flow or inflow turbulence.  The effect is 
significant and again indicates that isolated blade row calculations are too simplistic for reliable 
fan broadband noise prediction. 
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Figure 24.  Comparison of calculations for rotor inflow turbulence with and without a coupled stator. 
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SECTION 9 
CONCLUDING REMARKS 

 
 Earlier methods for predicting turbulent inflow noise from fans treated rotors and stators as 
isolated blade rows in a uniform background flow.  This report extends that capability by adding 
the effects of scattering by the adjacent blade row and turning of the mean flow by the rotor and 
stator.  Essential elements of the theory include: unsteady acoustic and vortical responses of 
rectilinear cascades via S. A. L. Glegg’s Wiener-Hopf theory, unsteady actuator disks to 
represent the effect of changes in mean flow on perturbation waves, full unsteady vortical and 
acoustic coupling of the rotor and stator, and turbulence represented by its 3D wavenumber 
spectrum.  The modeling requires that geometry and mean flow be constant in the spanwise 
direction.  Although this is a limitation, the benefit is that the cascade unsteady loading and 
acoustic/vortical response are mutually consistent and fully 3 dimensional. 
 
  In developing the coupling analysis, an important principle was discovered:  Many modes 
and frequencies are involved in fan broadband noise generation.  In the process of reflecting back 
and forth between the rotor and stator, each mode/frequency couples to many other 
mode/freqencies.  However, the coupling is limited to independent mode subsets each of which 
only communicates with its own modes and not with the other mode subsets.  This principle of 
independent mode subsets makes the coupling problem tractable.  If all modes could 
communicate with each other, computation time would be excessive.  But, by taking advantage 
of this principle, all of the calculations presented herein could be performed on a personal 
computer. 
 
 The computer code CupBB, which embodies the broadband theory, can compute noise due 
to turbulent inflow at the rotor or stator or both.  Comparison of isolated rotor or stator 
calculations with fully coupled calculations indicates that coupling increases the aft noise by 
about 3dB and increases the upstream/downstream sound power split from about 5 dB to about 
10 dB.  
 
Based on the limited calculations presented herein, the 2 major conclusions are as follows. 

1. It is unlikely that stator inflow turbulence contributes significantly to inlet noise. 
2. Unsteady coupling augments noise generation to the point that it must be included in any 

attempt at absolute level predictions. 
 
 The analysis presented in this report is based on rectilinear, flat plate theory.  Although this 
has its limitations, the 2 conclusions above should be reliable because the analysis is a fully 
consistent, 3D treatment of the unsteady flow.  Trends regarding effects of adjacent blade rows 
and flow turning are credible.  Thus, in the short term, the analysis can be used to upgrade 
existing isolated blade row prediction methods.  In the longer term, the principles discovered 
here and the coupling method derived can be used as guidance in development of unsteady CFD 
methods that can represent the blade response and turning effects more accurately. 
 
 Because of time constraints, conclusions have not yet been drawn regarding the importance 
of mode trapping in fan broadband noise.  The physics is modeled in the code but the computer 
runs required for the analysis must be performed in future work. 
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APPENDIX A 

GLEGG’S CASCADE THEORY FOR PRESSURE WAVES ADAPTED TO 
DUCT COORDINATES AND THE  n, k  INDEX NOTATION 

 
Section 6 of this report requires forms for the acoustic and vortical responses of stators and rotors 
to excitation by input acoustical and vortical waves.  This appendix provides the acoustic 
response and Appendix B provides the vortical response. 
 
Glegg developed his theory in “cascade coordinates” in which the  x  axis is aligned with the 
flow direction.  In this appendix we adapt his scheme to “duct coordinates”, which have been 
chosen for the coupled cascade application.  In duct coordinates the  x  axis is aligned with the 
duct axis, the  y  axis with the tangential direction (positive in the direction of rotor rotation), and 
the  z  axis coincides with the leading edge of the reference vane (or blade).  Also, we replace the 
usual interblade phase angle, common in unsteady cascade analysis, with the  n,k  index notation 
commonly used in fan acoustic interaction theory.  Glegg’s theory accounts for sweep, but, in 
this report, we deal strictly with unswept blade rows. 
 
First, we will review Glegg’s theory (in cascade coordinates) and then transform his equations to 
duct coordinates.  As shown in Figure A-1, geometry is constant in the  z  direction and the 
background flow is uniform:  U=(W,0,0), as expressed in cascade coordinates.  Airfoils are 
unloaded flat plates.  Cascade gap, chord, and stagger angle are  g, c, and  θ .    
 

 
The unsteady flow is harmonic in space and time with upwash given by Equation A-1 
 
 ( )( , ) o c ci x y z t

ow t w e γ α ν ω+ + −=x  (A-1)  
 
This represents a plane wave that is harmonic in time with frequency  / 2ω π  and upwash 
complex amplitude  wo . It is also harmonic in space with  xc, yc, and  z  wavenumbers equal to  

 

g 

d 

xxc 

yc 

W 

θ 

z

xc

W

c 

h 

Figure A-1. Geometry and flow for 
Glegg’s cascade acoustic analysis(4).
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γo, α, and  ν.  By use of Wiener-Hopf analysis, Glegg derived an equation equivalent to the 
following for the velocity potential of acoustic waves scattered by the cascade in response to the 
input wave of Equation A-1 

 
2

[ ( / ) ( 2 ) / ]
2 2

( )( , ) k c c ci x y d h k y h z i to k k

e k e k

w c Dt e e
s f

λ σ π ν ωπ ζ λφ
β κ

±± ±∞
− − + − +± −

=−∞
= ±

−
∑x  (A-2) 

where the upper/lower sign applies to upstream/downstream going waves and 
 

 2/ 1M W a Mβ= = −  (A-3) 
 

 2 2 2 tan /e e k ks d h d h Mβ χ β λ κ η± ±= + = = +  (A-4) 
 

 2 2 2 2 2 2( ) ( / ) /( )k e k e aζ β κ η κ κ ν β κ ω β± ±= − = − =  (A-5) 
 

 2 2sin cos ( 2 ) /k k e e e k k ef f f k Md sη χ χ κ σ π κ± = − ± − = − +  (A-6) 
 
and od hσ γ α= +  is the interblade phase angle.   D  is the Fourier transform of the discontinuity 
in potential across the blade and wakes (in the form of an infinite product) and is the major result 
of Glegg’s derivation. We adhere to Glegg’s notation closely although we use  k  for the 
scattering index where Glegg used  m,  and  θ  for stagger, where Glegg used  χ , and  ω   for 
radian frequency where Glegg used  ω′ .   Also, the  D  function of this report is non-
dimensional; to obtain the  D  function of Glegg’s report, multiply the non-dimensional version 
by  woc2 . 
 
 The velocity, pressure, and density perturbations associated with the acoustic wave can be 
obtained from Equation A-2 via 
 2/ /r rp D Dt p aφ ρ φ ρ′= ∇ = − =u  (A-7) 
 
where  ρr  and  ar  are the ambient density and speed of sound in a region of the flow denoted by 
the subscript  r .  This leads to the following form for pressure in the scattered waves 
 

2
[ ( / ) ( 2 ) / ]

2 2

( ) ( )( , ) k c c ci x y d h k y h z i tr o k k k

e k e k

i w c W Dp t e e
s f

λ σ π ν ωπρ ω λ ζ λ
β κ

±± ± ±∞
− − + − +± −

=−∞

+= ±
−

∑x (A-8) 

 
 The formulation above gives the acoustic waves scattered by a cascade for a single planar 
wave input per Equation A-1.  Scattering index  k  runs over an infinite range but, as usual in this 
kind of formulation, only a finite number of waves are cut on (propagate undiminished); the 
remaining waves decay exponentially and, thus, carry no acoustic energy.  Cuton is governed by 

the argument of the square root 2 2
e kfκ − ; when the frequency is high enough, the argument is 

positive and the waves are cut on. 
 
 To apply Glegg’s theory in duct coordinates (as used in the main body of this report), we 
transform the exponential in Eq. A-1 to 
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 ( )x yi k x k y z te ν ω+ + −  (A-9) 
 
where  x  is the axial duct coordinate and the tangential duct coordinate is  y=R φ .  Furthermore, 
to deal directly with circumferential modes, we recognize that kyy=mφ .  This, with φ =y/R , 
gives  
 /yk m R=  (A-10) 
 
and the working form for the exponential in this appendix: 
 
 ( )xi k x m vz te φ ω+ + −  (A-11) 

Later on, we will find expressions for  se , 2 2, , andk k e kK fζ λ± ± −   in terms of  kx , m ,  and ω . 
 
Since the analysis of this report tracks scattering by the rotor and stator, we need a notation that 
includes the rotor and stator scattering indices.  Consistent with the presentation in Section 4, 
circumferential mode order is indexed on  q, n, and k  via 
 
 1 2m q nB kB= + −  (A-12) 
 
where   n  is the rotor scattering index,  k  is the stator scattering index, and  q  is the mode offset 
index.  Axial wavenumber, with our  n, k  subscripts was given in Eq. 5-10  
 

 2 2 2 2
2

1 ˆ ˆ ˆ( ) ( ) ( )xnk x y y x
x

k M mM mM m
R

ω ω β ν
β

± ⎡ ⎤= − + − + − +⎢ ⎥⎣ ⎦
m  (A-13) 

 
where we have normalized frequency by radius and speed of sound 
 

 ˆ
r

R
a
ωω =  (A-14) 

and spanwise wavenumber by radius 
 ˆ Rν ν=  (A-15) 
 
The reader can verify that Eq. A-13 can also be obtained from Glegg’s wavenumbers by 
coordinate transformation as in the following section. 

Stator Scattering 
The connection between Glegg’s cascade coordinates and 
our duct coordinates is a simple rotation about their 
common  z  axis as shown at the left.  The transformation 
is given by 

y = R φ   
  

θ2 

  x   

y c   

x c   

Duct Axis   

Stator 
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2 2

2 2

2 2

2 2

cos sin
sin cos
and
cos sin
sin cos

c c

c c

c

c

x x y
y x y

x x y
y x y

θ θ
θ θ

θ θ
θ θ

= −
= +

= +
= − +

                 (A-16) 

These equations are shown for the coordinate transformations but apply to transformation of the 
wavenumbers as well.  Note in Equation A-2 that the axial wavenumbers are  kλ

±−  .  Hence, 
from the 3rd line of Equation A-16, 
  

 2 2cos sinnk xnk
mk
R

λ θ θ± ±= − −  (A-17) 

 
where we have included an  n  subscript nkλ±  to help track scattered waves.  This leads to an 

alternative form for the effect of the convective derivative in Eq. A-7  nkWω λ±+  (times -i) 
  

 2 2 ˆ( cos sin ) ( )r
nk xnk x xnk y

m aW W k M k R M m
R R

ω λ ω θ θ ω± ± ±+ = − + = − − + +  (A-18) 

or 

 r
k nk

aW
R

ω λ± ±+ = − Λ  (A-19) 

 
where  ˆnk x xnk yM k R M mω± ±Λ = − + +  is the same as defined in Section 5. 
 We can also apply the transformation of Eq. A-16 in the reverse direction to verify the form 
of the tangential wavenumber in the duct system derived from Glegg’s forms.  Note in Eq. A-2 
that the  yc  wavenumber in the cascade system is   2tan ( 2 )nk k hλ θ σ π± + −  .  Thus, 
  

 2 2 2
2sin tan cosnk nk

m k
R h

σ πλ θ λ θ θ± ± −⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (A-20) 

or, in terms of vane gap,  g2 
  

 
2

2
y

m kk
R g

σ π−= =  (A-21) 

 
since  h = g cosθ .  This is the well known form from Smith’s theory (Ref. 7).  Another 
expression required below is easily derived 
  
 2e xs gβ=  (A-22) 
where 
  

 21x xMβ = −  (A-23) 
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To deal with the square root in the denominator of Equation A-2, we substitute definitions from 
Eqs. A-3 to A-6 and re-arrange to find 
  

 2 2 2 2 2 21 ˆ ˆ( ) ( )e k y x
x

K f mM m
R

ω β ν
ββ

− = − + − +  (A-24) 

 
The square root on the right side is the discriminator for cutoff.  It appears frequently so we give 
it a special symbol 
 

 2 2 2 2ˆ ˆ( ) ( )nk y xR mM mω β ν= − + − +  (A-25) 

 
Then, 

 2 2 1
e k nk

x
K f R

Rββ
− =  (A-26) 

 A convenient form for  kζ
±  can be developed by similar manipulations.  It must be treated 

with some care because the definition implies a square root of a square root, where the branch 
must be defined in the case of cutoff.  From the definitions in Eqs. A-3 to A-6, we force the 
following form 
 
  

 2 2 2 2 2 2( ) ( )k e k e k k kK K f fζ β η β η± ± ±= − = − + −  (A-27) 
 
Insert the definition of  kη

±   to get 
 

 ( ) ( )2 2 2 2 2 2 2 2 2 2sin 2 sin cos cosk e k k k e k e k e e e k eK f f f f K f K fζ β χ χ χ χ± ⎡ ⎤= − + − − + −⎢ ⎥⎣ ⎦
m  

  (A-28) 
 
and collect terms to find 
 

 ( )2 2 2 2 2 2 2sin 2 sin cos cosk e k e e k e k e k eK f K f f fζ β χ χ χ χ± = − ± − +  (A-29) 

or simply 
 

 2 2 sin cosk e k e k eK f fζ β χ χ± ⎛ ⎞= − ±⎜ ⎟
⎝ ⎠

 (A-30) 

 
Again we add the  n  subscript and non-dimensionalize on  R  
 
 ˆ /k nk Rζ ζ± ±=  (A-31) 
 
Then, by substituting definitions from above, we find the non-dimensional form to be 
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 2
2 22

1ˆ ˆsin ( ) cosnk nk y
x

R m Mζ θ β ω θ
β

± ⎡ ⎤= ± +⎣ ⎦  (A-32) 

 
In obtaining a working form for the scattered acoustic pressure, we need to distinguish clearly 
between input waves and output waves using our  “ n, k ” notation.  We will use unprimed 
indices to indicate input waves and primed indices for output waves.  The general form for mode 
order of waves input to the stator is 
 1 2m q nB kB= + −  (A-33) 
 
where  q  is the mode offset index,  n  relates to scattering at the rotor and  k  relates to scattering 
at the stator.  Interblade phase angle of the input waves is related to mode order by 
 

 
2

2 m
B
πσ =  (A-34) 

Thus, in the  “ n, k ” notation, 

 1 2
2

2 ( )q nB kB
B
πσ = + −  (A-35) 

 
We temporarily denote the scattering index (of the output waves) as  k″ .  In Glegg’s (and 
Smith’s) scattering theory, the scattering index appears only in combination with the interblade 
phase angle (of the input wave) as  2 kσ π ′′−  .  We can relate this to the circumferential mode 
order of the output wave via 

 1 2
2 2

2 22 [ ( ) ] mk q nB k k B
B B
π πσ π ′′′′ ′′− = + − + =  (A-36) 

where we have defined 
 
 1 2( )m q nB k k B′′ ′′= + − +  (A-37) 
 
We modify our notation for Glegg’s  D  function to nkkD±

′   which indicates input mode  n,k  and 
output mode  n,k′ .  When we put all of this together, the adapted form for the pressure waves 
becomes 
 

,
2 [ ], , , ,2

2 ,

ˆ
( , ) x n k ki k x m z tn k k n k k n k k kr r

nk
n k kk

Di a cp t w e
g R R

φ ν ωζπ ρ ±
′′+

± ± ±∞ ′′+ + −′′ ′′ ′′+ + +±

′′+′′=−∞

Λ
= ∑x m  (A-38) 

 
Since the sum runs over all values of  k″ , it can be re-indexed via  k′ = k + k″  with the result  
 

 
2 [ ]2

2

ˆ
( , ) x nki k x m z tnk nk nkkr r

nk
nkk

Di a cp t w e
g R R

φ ν ωζπ ρ ±
′

± ± ±∞ ′+ + −± ′ ′ ′

′′=−∞

Λ= ∑x m  (A-39) 

 
where  1' 'm q nB k B= + − .  For the duct simulation in the main body of the report, the endwall 
are at  z = 0 and  z = h  and the z  dependence of the upwash is given by cosines as in Eqs. 3.10 
and 5.7.  Of course, cosines are linear combinations of Glegg’s upwash form in Eq. A-1 so that 
we can use 
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 ( )( , ) cos( )o c ci x y t
o

zw t w e
h

γ α ω µπ+ −=x  (A-40) 

where  µ  is the radial mode index running from 0 to ∞.  Now Eq. A-39 can simply be modified 
to give the response associated with Eq. A-40 
 

 
2 [ ]2

2

ˆ
( , ) cos( )x nki k x m tnk nk nkkr r

nk
nkk

Di a c zp t w e
g R R h

φ ωζπ ρ µπ±
′

± ± ±∞ ′+ −± ′ ′ ′

′′=−∞

Λ= ∑x m  (A-41) 

 
This can be written as 

 ( , ) nkk
k

p t p
∞

± ±
′

′=−∞
= ∑x  (A-42) 

 
where  pnkk′   is the form used in Section 6 to develop the system of scattering equations. 
 

 [ ]2

2

ˆˆ
cos( )x nki k x m tr r nk nk nkk

nkk nk
nk

i a c D zp w e
g R h

φ ωπ ρ ζ µπ±
′

± ± ± ′+ −± ′ ′ ′
′

′

Λ=
m

 (A-43) 

 
We have defined  2 2 2 2 2ˆ  and  c c R g g c= =  .  Note that in the main body of this report the 
stator input and output frequencies are  1o nBω + Ω  . 
 

Rotor Scattering 
Coupling between rotor and stator is done in the stator reference frame at mode order  m = q + 
nB1 - kB2  and frequency  ωo+nB1Ω.  Thus, the input order and frequency for the rotor are the 
same as for the stator problem.  However, to apply the cascade theory, we must transform the 
input to the rotor frame where the mode order stays the same but frequency shifts because of 
rotation.  Mode order  m  results in interblade phase angle 
 

 
1

2 m
B
πσ =  (A-44) 

 
Consider the kinematic phase of the input wave 
 
 m tψ φ ω= −  (A-45) 
 
Transformation to the rotor frame via  φ = φr + Ωt  gives 
 
 ( )rm m tψ φ ω= − − Ω  (A-46) 

 
The rotor scatters mode order on the  n  index, so we denote the output wave modes as 
 
 1 2( )m q n n B kB′′ ′′= + + −  (A-47) 
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However, in the rotor-fixed frame, scattering does not change frequency; hence kinematic phase 
of the scattered waves becomes 
 
 ( )rm m tψ φ ω′′ ′′= − − Ω  (A-48) 
 
Thus, frequency in the rotor frame becomes 
 r mω ω= − Ω  (A-49) 
or, in normalized form 
 ˆ ˆ Tr mMω ω= −  (A-50) 
  
Axial wavenumber for the rotor can be obtained from Eq. A-13 by replacing  ˆ ˆby rω ω   and  My  
by  (My-MT).   
 

2 2 2 2
2

1 ˆ ˆ ˆ[ ( )] [ ( )] ( )T Txnk x r y r y x
x

k M m M M m M M m
R

ω ω β ν
β

± ⎡ ⎤= − + − − + − − +⎢ ⎥⎣ ⎦
m  (A-51) 

 
However, it can be seen from Eq. A-48 that 
 
 ˆ ˆ( )Tr y ym M M mMω ω− + − = − +  (A-52) 
 
and axial wavenumber reverts to the form used for the stator in Eq. A-13 
 

 2 2 2 2
2

1 ˆ ˆ ˆ( ) ( ) ( )xnk x y y x
x

k M mM mM m
R

ω ω β ν
β

± ⎡ ⎤= − + − + − +⎢ ⎥⎣ ⎦
m  (A-53) 

 
This is as it must be since the wavenumbers are related to physical lengths of the waves that 

would be the same in any coordinate system.  A similar approach shows that  2 2
e nK f−   has the 

same form for the stator, i.e.  2 2
e k nk xK f R Rββ− =  where, as before 

 

 2 2 2 2ˆ ˆ( ) ( )nk y xR mM mω β ν= − + − +  (A-54) 

 
The derivation for  nζ

±  proceeds the same as for the stator down to Eq. A-30: 
 

 2 2 sin cosn e n e n eK f fζ β χ χ± ⎛ ⎞= − ±⎜ ⎟
⎝ ⎠

 (A-55) 

 
except that now, of course,  χe  applies to rotor geometry and flow.  We add the  k  subscript for 
clarity and normalize on  R  as follows 
 
 ˆ /n nk Rζ ζ± ±=  (A-56) 
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Substitution of the appropriate definitions leads to the following as the normalized form for the 
rotor 
  

 2
1 1 12

1ˆ ˆsin ( ( ) ) cosTnk nk r y
x

R m M Mζ θ β ω θ
β

± ⎡ ⎤= ± + −⎣ ⎦  (A-57) 

 
where again the upper/lower sign goes with the up/downstream-going acoustic wave.  Here,  
  
 2 2 2

1 1 ( )Tx yM M Mβ = − − −  (A-58) 
 
is related to the relative Mach number at the rotor. 
 
 As stated above, interblade phase angle for input waves is 
  

 
1

2 m
B
πσ =  (A-59) 

 
where  m  for the input wave is still  m=q+nB1-kB2 .  We temporarily use  n″  as the rotor 
scattering index.  Then the factor in Glegg’s equations containing the scattering index becomes 
  

 1 2
1 1

2 22 [ ( ) ] mn q n n B kB
B B
π πσ π ′′′′ ′′+ = + + − =  (A-60) 

Here we have defined 
 1 2( )m q n n B kB′′ ′′= + + −  (A-61) 
 
 The pressure in the rotor frame can now be written 

, ,
2 [ ], , , ,1

1 ,

ˆ
( , ) r rx n n ki k x m z tn n k n n k n k n nr r

nk
n n kn

Di a cp t w e
g R R

φ ν ωζπ ρ ±
′′+

± ±∞ ′′+ + −′′ ′′ ′′+ + +±

′′+′′=−∞

Λ
= ∑x m  (A-62) 

 
We re-index this via  n′=n+n″  , note that the application in the main body of this report uses 

1o nBω ω= + Ω , and then return to the stator frame via  φr = φ -Ω t  to find 
 

 1
2 [ ( ' ) ]1

1

ˆ
( , ) x n k oi k x m z n B tr r n k n k nkn

nk
n kn

i a c Dp t w e
g R R

φ ν ωπ ρ ζ ±
′

∞ ± ± ′+ + − + Ω± ′ ′ ′

′′=−∞

Λ= ∑x m  (A-63) 

 
As with the stator scattering equations, n k

±
′Λ  gives the effect of the convective derivative.  This 

is the same in the rotor and stator frames since, by definition, it is the derivative “following a 
particle”.  The equivalence can be seen in our notation as follows.  The convective derivative in 
the rotor frame produces 

 ( )r
r xn k

r

D mi Uk V R
D t R

ω ±
′

′⎡ ⎤= − + + −Ω⎢ ⎥⎣ ⎦
 (A-64) 

 
since the transverse velocity in the rotor frame is  V-ΩR .  In the stator frame 
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 1( ' )xn k o xn k
D m mi Uk V i n B Uk V
Dt R R

ω ω± ±
′ ′

′ ′⎡ ⎤ ⎡ ⎤= − + + = − − Ω + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (A-65) 

 
These are the same since  r mω ω ′= − Ω  .  In a form parallel to Eq. A-40 for the stator waves, we 
write 

 ( , ) nkn
n

p t p
∞

± ±
′

′=−∞
= ∑x  (A-66) 

where 
 

 1[ ( ' ) ]1

1

ˆˆ xn k oi k x m z n B tr r n k n k nkn
nkn nk

n k

i a c Dp w e
g R

φ ν ωπ ρ ζ ±
′

± ±
′+ + − + Ω± ′ ′ ′

′
′

Λ= m  (A-67) 

 
For the upwash in a ducted system we again use Eq. A-40 so that Eq. A-67 becomes 
 

 1[ ( ' ) ]1

1

ˆˆ
cos( )xn k oi k x m n B tr r n k n k nkn

nkn nk
n k

i a c D zp w e
g R h

φ ωπ ρ ζ µπ±
′

± ±
′+ − + Ω± ′ ′ ′

′
′

Λ= m  (A-68) 

 
This gives the scattering by the rotor represented in the stator reference frame.  It is the desired 
form for setting up the scattering equations in Section 6.  It can be seen that the rotor scatters 
frequencies  1o nBω + Ω   into frequencies  1'o n Bω + Ω  . 
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APPENDIX B 

GLEGG’S CASCADE THEORY FOR VORTICAL WAVES ADAPTED TO 
DUCT COORDINATES AND THE  n, k  INDEX NOTATION 

 
 This appendix develops equations needed in Section 6 for vortical waves shed by a cascade 
due to excitation by both acoustic and vortical waves.  Results are provided in the contexts of 
both stator and rotor. 
 
 Glegg has extended the Wiener-Hopf theory of Ref. 4 to include vortical response (via a 
personal communication).  The output velocity perturbation can be written in a series over the 
scattering index  k  as follows 
 

 ( )( , ) c c ci x y z t
k

k
t e γ α ν ω

∞
+ + −

=−∞
= ∑v x V  (B-1) 

 
where  xc  and  yc  are Glegg’s cascade coordinates ( x and  y in his notation) and  γ c  and  α  are 
the associated wavenumbers (corresponding to convection).    
 
 c W

ωγ =  (B-2) 

 
 ( 2 )ck d hα σ π γ= − −  (B-3) 
 
and  ν  is the  z  wavenumber.  Glegg’s result for the velocity vector amplitudes is 
 

 2
2 2 2

2 ( ) ( )
( )

c o
k c c c c c

c

iK w c
h

π γ αγ ζ αν
γ α ν

−= + +
+ +

V i j k  (B-4) 

 
where 
 2 2 2( )c cζ γ ν= − +  (B-5) 
 
When  Vk  is represented in duct coordinates via Eqs. A-16, the resulting  x, y, z  components are 
 

   2
2 2 2

2 ( ) ( cos sin )
( )

c o
k c c

c

iK w cu
h

π γ αγ θ ζ θ
γ α ν

−= −
+ +

 (B-6) 

 

 2
2 2 2

2 ( ) ( sin cos )
( )

c o
k c c

c

iK w cv
h

π γ αγ θ ζ θ
γ α ν

−= +
+ +

 (B-7) 

 

 2 2 2
2 ( ) ( )

( )
c o

k
c

iK w cw
h

π γ αν
γ α ν

−=
+ +

 (B-8) 
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Stator Waves 
For the vortical waves, we apply the strategy already developed in Appendix A for pressure 
waves.  Mode order of the input waves is  
 
 1 2m q nB kB= + −  (B-9) 
with associated interblade phase angle 

 
2

2 m
B
πσ =  (B-10) 

 
Since the stator scatters on the  k  index, we write the mode order of the scattered waves as 
 
 1 2( )m q nB k k B′′ ′′= + − +  (B-11) 
 
Then the  yc  wavenumber can be expressed in terms of duct coordinates wavenumbers via Eq. 
A-16 with the result 
 , 3 , 2 2sin cosm

n k k x n k k Rkα θ θ′′
′′ ′′+ += − +  (B-12) 

 
Now the velocity perturbations controlling upwash (in the duct coordinate system) are 
 

3 ,
2

( ), 2 2
2 2 2

,

cos sin2 ( )( , ) x n k ki k x m z tn k k c cc
nk

k c n k k

iKu t w e
h c

φ ν ωα γ θ ζ θπ γ
γ α ν

′′+
∞ ′′+ + −′′+

′′ ′′=−∞ +

−−=
+ +

∑x  (B-13) 

and 

3 ,
2

( ), 2 2
2 2 2

,

sin cos2 ( )( , ) x n k ki k x m z tn k k c cc
nk

k c n k k

iKv t w e
h c

φ ν ωα γ θ ζ θπ γ
γ α ν

′′+
∞ ′′+ + −′′+

′′ ′′=−∞ +

+−=
+ +

∑x  (B-14) 

 
Eqs. B-13 and B-14 are in a mixed notation, using wavenumbers from both the duct system and 
the cascade system.  This turns out to be convenient for coding. 
 
Again, we shift the  k″  index via  k′ = k + k″   to arrive at the final forms for vortical waves shed 
by the stator 

 ( , ) nkk
k

u t u
∞

′
′=−∞

= ∑x  (B-15) 

and 

  ( , ) nkk
k

v t v
∞

′
′=−∞

= ∑x  (B-16) 

where 

 3
2

( )2 2
2 2 2

2 ( ) cos sin x nki k x m z tc nk c c
nkk nk

c nk

iKu w e
h c

φ ν ωπ γ α γ θ ζ θ
γ α ν

′ ′+ + −′
′

′

− −=
+ +

 (B-17) 

 

 3
2

( )2 2
2 2 2

2 ( ) sin cos x nki k x m z tc nk c c
nkk nk

c nk

iKv w e
h c

φ ν ωπ γ α γ θ ζ θ
γ α ν

′ ′+ + −′
′

′

− +=
+ +

 (B-18) 



NASA/CR—2001-211136/REV1 77

where in the main body of this report  1o nBω ω= + Ω .  As the notation implies, these represent 
scattering by the stator of an  n,k  input wave into an  n,k’  output wave. 

Rotor Waves 
Here we find forms analogous to Eqs. B-17 and B-18 for scattering by the rotor.  Input waves 
have mode order  m = q + nB1 - kB2  and frequency  ω  in the stator coordinate system.  Mode 
order  m   results in interblade phase angle 
 

 
1

2 m
B
πσ =  (B-19) 

 
Consider the kinematic phase of the input wave 
 
 m tψ φ ω= −  (B-20) 
 
Transformation to the rotor frame via  φ = φr + Ωt  gives 
 
 ( )rm m tψ φ ω= − − Ω  (B-21) 

 
The rotor scatters on the  n  index, so we denote the output wave mode orders as 
 
 1 2( )m q n n B kB′′ ′′= + + −  (B-22) 
 
However, in the rotor-fixed frame, the frequency does not change so that the kinematic phase of 
the scattered waves becomes 
 
 ( )rm m tψ φ ω′′ ′′= − − Ω  (B-23) 
 
Then the  α  wavenumber is 
 
 , 3 , 1 1sin cosm

n n k x n n k Rkα θ θ′′
′′ ′′+ += − +  (B-24) 

 
and the relevant velocity perturbations (in the rotor frame) are 
 

 3 ,
2

( ), 1 1
2 2 2

,

cos sin2 ( )( , ) x n n ki k x zn n k c cc
nk

n c n n k

iKu t w e
h c

ν ψα γ θ ζ θπ γ
γ α ν

′′+
∞ ′′+ +′′+

′′ ′′=−∞ +

−−=
+ +

∑x  (B-25) 

and 

 3 ,
2

( ), 1 1
2 2 2

,

sin cos2 ( )( , ) x n n ki k x zn n k c cc
nk

n c n n k

iKv t w e
h c

ν ψα γ θ ζ θπ γ
γ α ν

′′+
∞ ′′+ +′′+

′′ ′′=−∞ +

+−=
+ +

∑x  (B-26) 

 
Transformation back to the stator frame yields 
 
 ( )m m m tψ φ ω′′ ′′ ′′= − + Ω − Ω  (B-27) 
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We shift the  n″  index via  n′ = n + n″   to arrive at the final forms for vortical waves shed by the 
rotor.  Frequency becomes  ( )r n nω ω ′= + − Ω   and 
 

 ( , ) nkn
n

u t u
∞

′
′=−∞

= ∑x  (B-28) 

and 

  ( , ) nkn
n

v t v
∞

′
′=−∞

= ∑x  (B-29) 

 
where 

     3 1
2

{ [ ( ) ] }1 1
2 2 2

2 ( ) cos sin x n ki k x m z n n B tc n k c c
nkn nk

c n k

iKu w e
h c

φ ν ωπ γ α γ θ ζ θ
γ α ν

′ ′ ′+ + − + − Ω′
′

′

− −=
+ +

 (B-30) 

 
 

     3 1
2

{ [ ( ) ] }1 1
2 2 2

2 ( ) sin cos x n ki k x m z n n B tc n k c c
nkn nk

c n k

iKv w e
h c

φ ν ωπ γ α γ θ ζ θ
γ α ν

′ ′ ′+ + − + − Ω′
′

′

− +=
+ +

 (B-31) 

 
And here the notation indicates scattering by the rotor of an  n, k  input wave into an  n′, k  output 
wave.  These forms are adapted to the coupling analysis in the main body of the report, 

1o nBω + Ω  and hence Eqs. B-30 and B-31 become 
 

     3 1
2

[ ( ) ]1 1
2 2 2

2 ( ) cos sin x n k oi k x m z n B tc n k c c
nkn nk

c n k

iKu w e
h c

φ ν ωπ γ α γ θ ζ θ
γ α ν

′ ′ ′+ + − + Ω′
′

′
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 (B-32) 

 
 

     3 1
2

[ ( ) ]1 1
2 2 2

2 ( ) sin cos x n k oi k x m z n B tc n k c c
nkn nk

c n k

iKv w e
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φ ν ωπ γ α γ θ ζ θ
γ α ν

′ ′ ′+ + − + Ω′
′

′
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 (B-33) 
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APPENDIX C 
ACTUATOR DISK THEORY 

 
In Section 6, equations were derived for the rotor and stator as scattering elements.  For example, 
the stator element consists of 2 sub-elements: the vane cascade in uniform flow and an actuator 
disk whose role is to account for changes in the mean flow that affect the acoustic environment.  
Section 6 gave the derivation for the cascade scattering and showed how the cascade is coupled 
to the actuator disk; this appendix provides the derivation of the actuator disk equations for 
application in Section 6. 
 
The actuator disks in the scattering theory account for turning of the mean flow at the rotor and 
stator through conservation of mass and momentum.  In the conservation equations, the flow 
quantities are written as sums of steady and perturbation (or unsteady) parts.  When the steady 
and unsteady parts are separated, the steady flow is considered to be prescribed or known from a 
separate aerodynamic analysis.  The steady flow provides coefficients for the unsteady equations 
so that jumps in the mean flow cause jumps in the perturbation flow.  The jumps are effectively 
modal reflection and transmission coefficients that can be found by inverting a linear system. 
 
There are 4 wave types: 
     T=1: Upstream-going pressure waves 
     T=2: Downstream-going pressure waves 
     T=3: Vortical (downstream-going) waves 
     T=4: Vortical (downstream-going) waves 
 
and 4 conservation equations: 
     Conservation of mass 
     Conservation of axial momentum 
     Conservation of tangential momentum 
     Conservation of radial momentum 
 
These are satisfied on a mode-by-mode basis using the standard wave set from the main text.  
Each of the 4 wave types as input scatters out 4 wave types.  Thus, whereas the cascades scatter 
on mode order and wave type, the actuator disks scatter only on wave type.  The actuator disks 
do not scatter on mode order because they have no variation in geometry in the tangential 
direction. 
 
In the following sections, we apply the conservation equations, one at a time, by linearizing them 
and applying the standard wave sets from Section 5.  These lead to 4 by 4 matrix systems for 
each circumferential mode order (each  n, k  combination) that are solved by inversion. 
 

CONSERVATION OF MASS 
For conservation of mass,   ρ u   is matched on both sides of the actuator disk: 
 
 ( ) ( )a bu uρ ρ=  (C-1) 
 
We write this in terms of steady and unsteady parts (with the tilde’s): 
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 ( )( ) ( )( )a a a a b b b bU u U uρ ρ ρ ρ+ + = + +% %% %  (C-2) 
 
and focus on the first order unsteady terms, which become 
 

 2 2
a b

a a a b b b
a b

U Uu p u p
a a

ρ ρ+ = +% % % %  (C-3) 

after applying  2p aρ= %% .  Now, we define 
 

 2
o a

a a a a
o a

a UC u p
p a

ρ
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

% %  (C-4) 

 
for matching at the actuator disk with a similar form  Cb  for region  b.  The normalization via 
ao/po  is for convenience.  ao  and  po  are reference values for the sound speed and ambient 
pressure which will drop out of the formulas later. 
 
We interpret Eq. C-4 to apply on a mode-by-mode basis and express the perturbation quantities 
as the sum over all wave types.  For example, the contribution of the upstream-going pressure 
(Type 1) in region  a  is denoted by the coefficient  1

aA , which is stands for the defining pressure 

component 1 ( , )aA n k   in Eq. 6.1.  The contribution from the associated axial velocity component 

in Eq. C-4 is proportional to  1
aA   via the second line of Eq. 5.11. 

 
For  µ = 0: 
 

 

1
1

1

2
2

2

3
3

ˆ

ˆ

ˆ

a a
ao o x nk x

a a oa
o a a ank

a a
ao o x nk x

a oa
o a a ank

ao
a o a

o x nk

a p k MC p A
p a a

a p k M p A
p a a

a ma A
p k

ρ
ρ

ρ
ρ

ρ

⎡ ⎤⎛ ⎞−= +⎢ ⎥⎜ ⎟⎜ ⎟Λ⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞−+ +⎢ ⎥⎜ ⎟⎜ ⎟Λ⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞−+ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (C-5) 

 
where the first line comes from the upstream-going pressure wave, the second from the 
downstream-going pressure wave, and the third from the vorticity wave.  Because we are 
matching on a mode-by-mode basis, we have dropped the  n,k  subscripts, the exponential, and 
the cosine, which are common to all terms.   
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For  µ > 0: 
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[ ]
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⎡ ⎤⎛ ⎞−= +⎢ ⎥⎜ ⎟⎜ ⎟Λ⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞−+ +⎢ ⎥⎜ ⎟⎜ ⎟Λ⎢ ⎥⎝ ⎠⎣ ⎦

+

+

 (C-6) 

 
All of the matching is at  x = 0;  reference planes are shifted later via exponentials.  We compress 
the notation and write Eq. C-4 as 
 
 1 1 2 2 3 3 4 4

a a a a
a a a a aC C A C A C A C A= + + +  (C-7) 

where 

 

1
1

1

2
2

2

ˆ

ˆ

a
ao x nk

a xa
a nk

a
ao x nk

a xa
a nk

a kC M
a

a kC M
a

⎡ ⎤−= +⎢ ⎥
Λ⎢ ⎥⎣ ⎦

⎡ ⎤−= +⎢ ⎥
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 (C-8) 

For  µ = 0 

 
2

3
3

ˆ
a o

a a
o a x nk

p a mC
p a k

γ
⎡ ⎤⎛ ⎞ −= ⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠ ⎣ ⎦

 (C-9) 

 
and for µ > 0 

 
3

2

4

0a

a o
a

o a

C

p aC
p a

γ

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

 (C-10) 

 
where  γ  , the ratio of specific heats, entered from  2

a a ap aγ ρ= .  The same argument leads to 
the conserved quantity on the  b  side of the actuator disk (for µ  > 0) 
 
 1 1 2 2 3 3 4 4

b b b b
b b b b bC C A C A C A C A= + + +  (C-11) 

 
Now we equate  Ca  and Cb .  Furthermore, we identify the 4 waves approaching the actuator disk 
from each side as input waves and place them on the right hand side of the equation and the 4 
waves leaving the actuator disk as scattered waves and place them on the left side.  The input 
waves are the upstream-going pressure wave on the  b  side and the downstream-going pressure 
wave and the vorticity waves on the  a   side.  The scattered waves are on the upstream-going 
wave on the  a  side and the downstream-going pressure and vorticity waves on the  b  side. 
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 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4
a b b b b a a a

a b b b b a a aC A C A C A C A C A C A C A C A− − − = − − −  (C-12) 
 
This (or the corresponding equation for  µ = 0) is the first of the actuator disk equations and 
represents conservation of mass. 
 
 

CONSERVATION OF AXIAL MOMENTUM 
We treat conservation of axial momentum in similar fashion.  The unlinearized conservation 
equation is  
 2 2sin ( ) ( )m a bL p u p uα ρ ρ+ + = +  (C-13) 
 
where the first term is the axial component of loading on the disk.  The critical step here is to 
separate the total loading on the blade row into the steady part, which is handled via the actuator 
disk, and the unsteady part, which is handled via unsteady cascade theory.  Then, when we 
express the variables in Eq. C-13 in terms of steady and unsteady parts, the unsteady loading (on 
the actuator disk) is by definition equal to zero and the first order perturbation equation is 
 
 2 2(1 ( ) ) 2 (1 ( ) ) 2a b

x a a a a x b b b bM p U u M p U uρ ρ+ + = + +% % % %  (C-14) 
 
We define 

 21 (1 ( ) ) 2a
a x a a a a

o
F M p U u

p
ρ⎡ ⎤= + +⎣ ⎦

% %  (C-15) 

 
and expand it in the 4 wave types, as before 
 
 1 1 2 2 3 3 4 4

a a a a
a a a a aF F A F A F A F A= + + +  (C-16) 

where 
 

 

2 1
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2

ˆ
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ˆ
[1 ( ) ] 2

a
a a x nk

a x x a
nk
a

a a x nk
a x x a
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kF M M

kF M M

⎛ ⎞−= + + ⎜ ⎟⎜ ⎟Λ⎝ ⎠
⎛ ⎞−= + + ⎜ ⎟⎜ ⎟Λ⎝ ⎠

 (C-17) 

for µ = 0 

 3
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2 ˆ
aa o

a x a
o a x nk

p a mF M
p a k

γ
⎡ ⎤−= ⎢ ⎥
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 (C-18) 

and for  µ > 0 
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a x
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F
p aF M
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=
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 (C-19) 
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The equations for the  b  side of the actuator disk are the same with  b’s  substituted for the  a’s.  
By using the scheme described above for identifying source waves and scattered waves, the 
equation for conservation of axial momentum becomes 
 
 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

a b b b b a a a
a b b b b a a aF A F A F A F A F A F A F A F A− − − = − − −  (C-20) 

 
 

CONSERVATION OF TANGENTIAL MOMENTUM 
The unlinearized equation for transverse (y  direction) momentum is 
 
 cos ( ) ( )m a bL u v u vα ρ ρ− + =  (C-21) 
 
Using the same arguments as in the discussion of axial momentum, the first order conserved 
quantity can be written 
 

 1 a a
a a a a a a a x y a

o
G U v V u M M p

p
ρ ρ⎡ ⎤= + +⎣ ⎦

% % %  (C-22) 

 
or, in terms of the 4 wave types, as 
 
 1 1 2 2 3 3 4 4

a a a a
a a a a aG G A G A G A G A= + + +  (C-23) 

where 
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 (C-24) 

for µ = 0 
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 (C-25) 

 
and for  µ > 0 
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γ
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 (C-26) 

 
and the conservation equation for tangential momentum has the same form as the other 2 
conservation  equations 
 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

a b b b b a a a
a b b b b a a aG A G A G A G A G A G A G A G A− − − = − − −  (C-27) 
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CONSERVATION OF RADIAL MOMENTUM 
This, the 4th conservation equation, is only applied for  µ > 0 , where there are 4 wave types.  
The unlinearized equation for transverse (y  direction) momentum is 
 
 ( ) ( )a bu w u wρ ρ=  (C-28) 
 
Using the same arguments as in the discussion of axial momentum, the first order conserved 
quantity can be written a a aU wρ % .  We define 
 

 [ ]1
a a a a

o
H U w

p
ρ= %  (C-29) 

or, in terms of the 4 wave types, as 
 
 1 1 2 2 3 3 4 4

a a a a
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where 
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 (C-31) 

 
and the conservation equation for radial momentum has the same form as the other 3 
conservation  equations 
 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

a b b b b a a a
a b b b b a a aH A H A H A H A H A H A H A H A− − − = − − −  (C-32) 

 

SOLUTION OF LINEAR SYSTEM 
By “solution” here, we mean finding the scattered waves for specified input waves.  To this end 
we assemble Eqs. C-12, C-20, C-27, C-32 into matrix form 
 

 

1 2 3 4 1 2 3 41 1

1 2 3 4 1 2 3 42 2

1 2 3 4 1 2 3 43 3

1 2 3 4 1 2 3 44 4

a b
a b b b b a a a

b a
a b b b b a a a

b a
a b b b b a a a

b a
a b b b b a a a

C C C C C C C CA A

F F F F F F F FA A

G G G G G G G GA A

H H H H H H H HA A

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡− − − − − −
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢− − − − − −

=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
− − − − − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
− − − − − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦

⎤
⎥
⎥
⎥
⎥
⎥

⎢ ⎥⎦

 (C-33) 
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Solution to this equation is 
    

      

1
1 2 3 4 1 2 3 41 1

1 2 3 4 1 2 3 42 2

1 2 3 4 1 2 3 43 3

1 2 3 4 1 2 3 44 4

a b
a b b b b a a a

b a
a b b b b a a a

b a
a b b b b a a a

b a
a b b b b a a a

C C C C C C C CA A

F F F F F F F FA A

G G G G G G G GA A

H H H H H H H HA A

−
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡− − − − − −
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢− − − − − −

= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
− − − − − −⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥
− − − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦

⎤
⎥
⎥
⎥
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⎢ ⎥
⎢ ⎥⎦

 (C-34) 

 
or simply 
 

 

11 12 13 141 1

21 22 23 242 2

31 32 33 343 3

41 42 43 444 4

a b

b a

b a

b a

K K K KA A

K K K KA A

K K K KA A

K K K KA A

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (C-35)  

 

APPLICATION OF SOLUTION 
The objective of this analysis is to create rotor and stator acoustic elements that can be 
represented in the coupling system of Figure 13.  For example, when the stator cascade (with 
uniform flow corresponding to region 2) is combined with an actuator disk at the trailing edge to 
turn the flow from the θ  direction to axial, the result is the stator acoustic element.  This is done 
by using Eqs. 6-13 and 6-14, which amounts to 4 equations for the input/output behavior of the 
actuator disk, and a similar set of 4 equations for the input output behavior of the stator cascade.  
Setting the output of the cascade (on the downstream side) to the input of the actuator disk (on 
the upstream side) and the output of the actuator disk to the input of cascade permits us to 
eliminate 4 equations.  The result is Eq. 6-22 which represents the input/output characteristics of 
the combined stator element. 
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APPENDIX D 
LIST OF SYMBOLS 

ar, ao speed of sound in region  r , speed of sound on standard day at sea level 
c1 , c2 chord of rotor and stator cascades 
g cascade gap 
h duct height in main part of report, gap perpendicular to blades in Appendices A & B 
j index for counting frequency from one mode sub-set to another 
k scattering index for stator 
m circumferential mode order 
n scattering index for rotor 
p acoustic pressure 
pr, po pressure in region  r, pressure on standard day at sea level 
q mode offset index 
r subscript (or superscript) for region (See Section 5).  Also denotes rotor. 
t time 
u, v, w axial, tangential, and radial components of perturbation velocity 
x, y, z coordinates in “duct system” (x axis aligned with axis of rotor rotation) 
xc, yc, z coordinates in “cascade system” (xc  axis aligned with airfoil chord and mean flow) 
w upwash velocity component 
 
Ar = ar / ao 

( , )r
TA n k  modal coefficient in state vector.  See Section 6.  T  is wave type, r is region, and n 

  and k  are the rotor and stator scattering indices. 
( , )r

TB n k  modal coefficient for source vector (related to turbulence in Section 7). 
B1 , B2 Number of blades in rotor, vanes in stator 
D Glegg’s potential jump.  See Eq. A-2 of this report and Ref. 4. 
E Cutoff discriminator.  See Eq. 7.10. 
Fnk Ratio of modal sound power to modal sound pressure, see Eq. 7.9.  
HD h/R , annulus height/effective radius 
I acoustic intensity 
K Glegg’s vorticity factor.  See Eq. B-4 and Ref. 4. 
L turbulence scale/R 
Mx, My axial and tangential Mach numbers of mean flow,  U/ar   and  V/ar 

( )r
TP  See Section 5 

Pr = pr / po 
R “effective radius” of fan; used for scaling 

( )r r
T TS ′
′  scattering coefficient, see Section 5 

T wave type.  See Section 5. 
U axial component of mean velocity 
V tangential component of mean velocity 
W mean velocity 
 
A state vector, see Section 6 
B source vector, see Section 6 
S scattering/coupling matrix, see Section 6 
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α  chordwise wavenumber in cascade coordinate system 

β 21 M−  

βx 21 xM−   
γ  ratio of specific heats, 1.4 for air 
δi,j Kroneker delta, = 1 for  i = j and = 0 for i ≠ j 
δ( ) Dirac delta or impulse function 
εµ  = 1 for µ = 0 and = ½ for µ > 0 
µε  = 2 for µ = 0 and = 1 for µ > 0 

φ  = y/R, tangential angle in duct coordinates 
µ  radial mode order 
ν radial wavenumber = µπ /HD 
λ result of convective derivative acting on exponentials, see Eq. 3-7 
σ interblade phase angle 
θ stagger angle 
ρ density 
τ one half the time for the block of flow under consideration to pass through the 
 cascade, see discussion in conjunction with Eqs. 7-25 – 7-29 
ω 2π  times frequency 
ωo offset frequency 
 
Ω angular speed of rotor 
Λ λ R / ar 
 
 
superscripts 
( )r region =1 upstream of rotor, =2 between rotor and stator, =3 downstream of stator 
( )* complex conjugate 
 
subscripts 
( )T denotes wave type, see Section 5 
 
 
overbars and hats 
( )  normalization by chord 

( )  normalization by  R 
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